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Abstract: The purpose of this paper is to investigate the comparative analysis of HSSOR iteration family 
together with Newton scheme in solving the nonlinear systems generated from the discretization process of 
second order two-point nonlinear boundary value problems via The half-sweep finite difference scheme. In 
order to get the numerical solution of the generated nonlinear systems, firstly the Newton scheme is used to 
linearize the nonlinear system into the form of linear system. In addition to that, the basic formulation and 
implementation of the HSSOR iteration family are also shown. Consequently numerical results of these 
iterative methods based on three examples have been compared to demonstrate the validity and applicability 
of tested methods. Clearly, The findings show that the Red-Black-Newton-HSSOR method indicates the 
superiority over other tested methods. 
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Introduction  

Boundary value problems play an important role in mathematical models used to simulate many 
branches of applied mathematics and physics such as gas dynamics, quantum mechanics, fluid dynamics, 
aerodynamics, chemical reactions, atomic structures, atomic calculations etc. Most phenomena in these 
problems, however, have been modeled by nonlinear differential equations. To get the numerical solutions of 
these problems, several purpose methods have been proposed to solve the nonlinear problems. For instance, 
in solving nonlinear two-point boundary value problems, among these methods are numerical analytic, finite 
difference, finite element, finite volume and boundary element methods. In this paper, however, we deal with 
the application of the finite difference method in order to develop a reliable algorithm in solving nonlinear 
two-point boundary value problems. By using the finite difference methods to derive a nonlinear 
approximation equation, a nonlinear system can be generated and need to be linearized through the Newton 
method in order to form the corresponding linear system. Since the characteristics of linear systems are large 
and sparse, iterative methods are the natural options for efficient solutions.  

To get numerical solutions of linear systems, various iterative methods also have been initiated to solve 
linear systems (see Young [1,2,3]; Hackbusch [4]; Saad [5]). Apart from those iterative methods, the concept 
of the half-sweep iterative method has been introduced by Abdullah [6] via Explicit Decoupled Group 
(EDG) iterative method in solving two-dimensional Poisson equations. The advantage of this iteration 
concept is to reduce the computational complexity of full-sweep linear systems generated from 
corresponding approximation equations. Due to the low computational complexity, this concept has been 
widely used to demonstrate its capability in constructing a fast reliable algorithm [7,8,9,10,11,12]. Besides 
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these one-stage iteration concepts, several studies have been conducted to combine between half-sweep 
iteration concept with two-stage iterative methods such as HSIADE [13], HSAM [14] and HSGM [15] in 
order to solve linear systems. Therefore, they pointed out that their proposed two-stage iterative methods are 
one of most efficient iterative methods in solving any system of linear equations. In addition to one- and two 
stage iterative methods, the standard multigrid methods have been modified by introducing a family of half-
sweep multigrid methods [16,17]. Consequently, Hassan et al. [18,19] have also established a family of 
FDTD methods using this concept in solving wave propagation problems. Then Saudi and Sulaiman [20,21] 
applied this half-sweep iteration to solve the robotic path planning.  

In this paper, we conduct the performance analysis of Red-Black HSSOR iteration together with Newton 
scheme, which is identified as Newton-RBHSSOR in solving a nonlinear second-order two-point boundary 
value problem. For comparison purpose, this method will be compared with Full-Sweep Gauss-Seidel 
(FSGS), Full-Sweep SOR (FSSOR) and Half-Sweep SOR (HSSOR) iterative methods with Newton scheme 
namely Newton-FSGS, Newton-FSSOR, and Newton-HSSOR respectively. To examine the performance of 
these proposed iterative methods, let us consider a nonlinear second-order two-point boundary value problem 
defined as 

 bxa),U,U,x(g
dx

Ud
2

2
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subject to the boundary conditions 
10   )b(U,)a(U   

where β0 and β1 are constants and )U,x(g  is a nonlinear continuous function.  For the sake of simplicity, we 
shall restrict our discussion onto uniform node points only as shown in Figure 1. Let the solution domain (1) 
be uniformly divided into 2,2  pm p  subinterval in which its distance, x  is defined in Eq. (2). 
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Figure 1.  a) and b) show the distribution of uniform node points for the full- and  half-sweep cases 

respectively at m = 8. 
 

Based on Figure 1, it can be shown that the finite grid networks can facilitate us for the implementation 
of these proposed iteration algorithms. In case of half-sweep  iteration,  the half-sweep finite grid network 
involve points of type      and     .  In fact, the implementation of the half-sweep point iteration will consider 
the interior node points of type      until the iterative convergence fixed is achieved. Due to the advantage of 
half-sweep approach, we examine the efficiency of the Newton-RBHSSOR iterative method for solving 
nonlinear second-order two-point boundary value problems by using the corresponding second-order finite 
difference approximation equation. The further explanation of the finite difference approximation equation 
will be enlightened in the next section. 

Second-Order Half-Sweep Nonlinear Finite Difference Approximation Equation 

To get the numerical solution of problem (1) iteratively, first we need to discretize the proposed problem. 
Therefore, let us impose the second-order central difference discretization scheme over  problem (1) to 
derive the second-order nonlinear finite difference approximation equation 
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for n,,,,i 321 . Actually, Eq. (3) is called as the second-order full-sweep nonlinear finite difference 
approximation. Similarly to derive Eq. (3) and using the second-order half-sweep central difference 
discretization scheme, the half-sweep nonlinear finite difference approximation equations [22] can be shown 
as 
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for 2642  n,,,,i  .  Based on Eqs. (3) and (4),  let us define the nonlinear function, f in general form 
as 
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for    11321  pn,,p,p,pi  , where the value of p in Eq. (5), which equals to 1 and 2 represents the 
full- and half-sweep cases respectively. By considering all interior node points in the solution domain (1), it 
can be shown that Eq. (5) leads  a nonlinear system, which can be expressed as 
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where, 
     1121  pn,,p,pi,U k
i   indicate as the kth estimation for corresponding exact solutions. 

Before solving the nonlinear system (6) by using any linear solvers, we impose the Newton method over the 
original nonlinear system  in order to form the corresponding  linear system which can be easily shown in the 
matrix form as   
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From Eq. (7),  the Jacobian matrix,  
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 is a coefficient matrix of the linear system. Therefore, the 

value of the vector, 
j~

h  needs to be calculated by solving the linear system. Then estimate solutions of  

 k
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U  can be determined by using the following expression 
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FORMULATION OF Newton-RBHSSOR Method 

For simplicity, consider the linear system (7) be rewritten in general form as 

 ~~
FUA   (a) 

Clearly it can be observed that since the number of subintervals, 2,2  pm p   is relatively a large positive integer 

number, this coefficient matrix of this linear system (9) is also large and sparse. According to Young [2] and other 

works [15,16], they pointed out that the iterative methods are the natural options for efficient solutions of sparse linear 

system. For the reason, we begin by considering four proposed iterative methods such as FSGS, FSSOR HSSOR and 

RBHSSOR as linear solvers. To apply these methods, firstly, we need to discuss on how to construct the formulation of 

the standard SOR (FSSOR) method, which is known as the Gauss-Seidel method with a weighted parameter,  . In 

fact, this method is used to speed up the convergence rate of the standard Gauss-Seidel (GS) method for solving any 

linear system. Essentially, Young [1,2,3] has initiated the standard Successive Over-Relaxation (SOR) method, which is 

also called as Full-Sweep SOR (FSSOR). This iterative method is one of the most known and widely used iterative 

techniques to solve any linear systems. Based on this method, the formulation of the RBHSSOR method is derived from 

a combination between the HSSOR method with the Red-Black ordering strategy. Now we begin on how to derive the 

formulation for FSSOR and HSSOR iterative methods. To do this, let the coefficient matrix, A in Eq. (9) be 

decomposed as  

 VLDA   (b) 
where L, D and V are lower triangular, diagonal and upper triangular  matrices respectively. By using the 
decomposition in Eq. (10) and determining values of matrices D, L and V, therefore, the general scheme for 
FSSOR and HSSOR methods can be stated as [1,2,3,20,22]  
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where ω and  k

~
U  represent as a relaxation factor and an unknown vector at the kth iteration  respectively. The 

choice of relaxation factor depends upon the properties of the coefficient matrix, A. In addition, a good 
choice for the value of the parameter ω can be used to accelerate the convergence rate of iteration process. In 
practice, the optimal value of ω in range 21    will be obtained by implementing several computer 
programs and then the best approximate value of ω is chosen in which its number of iterations is the 
smallest.  
 Since the concept of the RBHSSOR method is said as HSSOR method with red-black ordering strategy, 
the general scheme for the RBHSSOR method can be derived by using Eq.(11). To implement this method, 
the general algorithm for the RBHSSOR iterative methods to solve problem (9) would be generally described 
in Algorithm 1. 

                  
 

Algorithm 1:  RBHSSOR scheme 
i. Initialize 
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iv. Check the convergence test,      k
i
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i UU 1 . If yes, go to step (iv). Otherwise go back to step (iii)  

v.  Display approximate solutions. 
.  

NUMERICAL RESULTS 

To examine the effectiveness of the the FSGS, FSSOR, HSSOR and RBHSSOR methods together with 
Newton scheme namely Newton-FSGS, Newton-FSSOR, Newton-HSSOR and Newton-RBHSSOR 
respectively, three nonlinear examples of the problems were tested. For comparison purpose, we take into 
account three criteria such as number of iterations, execution time and maximum absolute error. These 
criteria will be recorded during the numerical experiments of the following three examples. In the 

implementation of the iterative methods, the convergence test considered the tolerance error,  = 1010 .  
 
Example 1 (Sung [24]) 
For comparison purpose, we consider the following nonlinear two-point boundary value problem 
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Then boundary conditions and the exact solution of the problem (12) were defined  by 
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Example 2 (Sung [24]) 
Let consider the following problem 
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with the boundary conditions 
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Then boundary conditions and the exact solution of the problem (14) were defined  by 
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Example 3 (Sung [24]) 
The third nonlinear boundary value problem, we consider as follows 
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Then boundary conditions and the exact solution of the problem (16) were defined  by 
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 For all above examples, results of numerical experiments obtained from implementation of the Newton-
FSGS, Newton-FSSOR, Newton-HSSOR and Newton-RBHSSOR iterative methods, have been recorded in 
Table 1.  

Conclusion 

In this paper, we present the formulation of the the FSGS, FSSOR, HSSOR and RBHSSOR methods 
together with Newton scheme namely Newton-FSGS, Newton-FSSOR, Newton-HSSOR and Newton-
RBHSSOR respectively  for solving the corresponding nonlinear systems, which are generated from the 
corresponding second-order nonlinear finite difference approximation equations of the proposed problem (1). 
To demonstrate the efficiency of the four proposed iterative methods, three nonlinear examples are 
presented. Throughout the numerical results obtained in Table 1, it can be concluded that the Newton-
RBHSSOR method is superior in terms of the number of iterations and the execution time for five different 
mesh sizes, 409620481024512256 ,,,,m   as compared with Newton-FSSOR and Newton-HSSOR methods. 
This is because of the computational complexity of Newton-RBHSSOR method is approximately 50% 
compared to the full-sweep case. Since Newton-RBHSSOR method involve two accelerated parameters in 
the iteration process, its convergence rate is better than the Newton-HSSOR method. Overall, the 
approximate solutions for all four proposed methods are in good agreement. It means that the Newton-
RBHSSOR method with second-order nonlinear finite difference approximation equations is a promising 
approach for solving the proposed nonlinear problems. For future works, the Newton-RBHSSOR method can 
be extended to solve multi-dimensional nonlinear problems.   
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