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In this paper, we deal with the application of Half-Sweep Accelerated Over Relaxation (HSAOR) method with nonlocal 

discretization scheme for solving two-dimensional nonlinear elliptic boundary value problems. To do this, we propose a new 

nonlocal arithmetic mean scheme namely the four-point rotated nonlocal arithmetic mean scheme being imposed into any 

nonlinear term in the proposed problems. By using the second order finite difference scheme, the half-sweep nonlinear 

approximation equation has been derived. Then, the nonlocal discretization scheme is applied to transform the system of 

nonlinear approximation equations into the corresponding system of linear equations. Throughout numerical results, it can be 

pointed out that the proposed HSAOR method was superior in terms of number of iterations, execution time and maximum 

error  compared to  Full-Sweep Successive Over-relaxation (FSSOR) and  Half-Sweep Successive Over Relaxation 

(HSSOR). 
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1. INTRODUCTION 

Presently, nonlinear boundary value problems of 

partial differential equations play an essential role in 

many fields. For instance, numerous nonlinear elliptic 

boundary value problems can be found in real time 

application such as numerical weather forecasting, 

radioactive transfer, optimal control and other areas of 

physics and engineering. Due to many applications of 

these problems, obtaining accurate and fast numerical 

solutions of two-dimensional nonlinear elliptic partial 

differential equations is of great importance due to its 

wide application in scientific and engineering researches.  

Therefore, many numerical methods intensively have 

been proposed to solve solve two-dimensional nonlinear 

elliptic partial differential equations such as non-

polynomial spline scheme
1
, Pade’ approximation

2
, 

collocation method
3
, spline scheme

4
, finite element 

methods
5
, finite difference methods

6
 and numerical 

integration method
7
. 

*
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To get approximate solution of nonlinear elliptic 

boundary value problems, the paper has considered the 

finite difference method in order to discretize the 

proposed nonlinear problems for constructing a 

corresponding nonlinear system. Then to solve this 

nonlinear system numerically, this paper has proposed the 

development of a fast and reliable algorithm to get its 

approximate solution. According to the previous studies 

of the case of linear boundary value problems, it can be 

observed that many researchers have also recommended 

and derived high-order finite difference approximation 

equations
8,9,10,11,12

. However in this paper, second order 

nonlinear half-sweep finite difference approximation 

equations are used to construct the system of nonlinear 

equations. Instead of using the Newton method to get 

numerical solutions of nonlinear system iteratively, the 

four-point rotated nonlocal arithmetic mean scheme has 

been applied to the nonlinear system in order to develop 

the corresponding system of linear equations.  

Having any large and sparse linear systems, the 

iterative methods are apparently the best alternative linear 
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solver that can be considered. As a result, there exist 

various iterative methods which are used to accelerate 

convergence rate in solving any linear systems. For 

instance, in year 1985 Evan
13

 has proposed block point 

iterative methods mainly on the Group Explicit (EG) 

iterative method.  Even though the EG iterative methods 

are better than the classical point iterative methods, 

Abdullah has modified the EG method by adding the half-

sweep iteration concept and produced Explicit Decoupled 

Group (EDG) method
14

 for solving linear elliptic 

boundary value problems. Attributes to the advantages of 

the the half-sweep iteration concept, this concept was 

extended by many researches
15,16,17,18,19

. As a matter of 

fact, the main characteristic of half-sweep iteration 

concept is actually to reduce the computational 

complexities during iteration process. This is because, the 

implementation of the half-sweep iterations only consider 

nearly half of whole node points in a solution domain 

respectively.  

Due to the large scale of the generated sparse linear 

system, the paper deals with the application of half-sweep 

iteration concept which is known as Half-sweep AOR 

method together with the four-point rotated nonlocal 

arithmetic mean scheme for solving the two-dimensional 

nonlinear elliptic problems. Hence, the outlines of this 

paper were organized in following ways: Section 2 will 

show the formulation of nonlocal discretization 

approximation scheme. Next, the explanation of  FSSOR, 

HSSOR and HSAOR iterative methods in Section 3 will 

be given and some numerical results will be shown in 

Section 4 to state the effectiveness of the proposed 

methods. Furthermore, the discussion and conclusion are 

mentioned in Section 5.  

Now let us consider a two-dimensional nonlinear 

elliptic boundary value problem, which is defined in 

general form as 

      
( ) ( ) [ ] [ ]babayxuuuyxFuu yxyyxx ,,,,,,, ×=Ω∈=+    (1) 

with  

( ) ( )uyxfuuuuuuuyxF yxyx ,,,,,, +−−=   

subject to the boundary conditions 
Ω∂= ),,(),( yxgyxu   

where Ω  is an arbitrary simply connected bounded 

region with smooth boundary Ω∂ and ( )uyxf ,,  and ),( yxg  

are continuous functions in the respective domain. From 

Eq.(1), it can be observed that the function 

( )yx uuuyxF ,,,,    is classified as nonlinear terms. 

In formulating the FSSOR, HSSOR and HSAOR 

iterative methods, the finite grid network needs to be built 

as a guide for development and implementation of these 

proposed iterative methods as depicted in Figure 1. 

According to the figure, let us consider the finite 

rectangular grid network with spacing grid h and also 

assume that the spacing grid h in which both directions  

with jhyyihxx ji +=+= 00 ,    are defined as 

    
( )

m

ab
yxh

−
=∆=∆=                                                  (2) 

where x∆ and y∆ represent the increment of x and y 

directions respectively while m is number of subintervals. 

Then let ( ) jiii uyxU ,, =  indicates the approximation value 

of function u at point ( )ii yx , . 

 

2. FORMULATION OF ROTATED NONLOCAL 

DISCRETIZATION SCHEME 

Before presenting the derivation of the half-sweep 

nonlinear finite difference approximation equation of 

Problem (1), let us consider several four-point standard 

nonlocal arithmetic mean discretization schemes be given 

as follows
20
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In this study, the formulation in Eq.(4) will be 

adopted to derive the four-point rotated nonlocal 

arithmetic mean discretization scheme for two 

dimensional problem given as  
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Using the approach of second-order finite difference 

discretization scheme, the half-sweep second-order finite 

difference approximation equations for problem (1) can 

be easily shown as 

  
jiji
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Then, by simplifying the Eq. (7) can be shown as 

         
,024

2
,

1,11,11,11,1
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                                                                                          (8) 

Actually, Eq. (9) is called as the nonlinear term of the 

problem (1). To solve the nonlinear system in Eq. (8), the 

nonlocal discretization scheme is used to transform the 

nonlinear system into the form of a system of linear 

equations. In this paper, however, we consider the 

nonlocal discretization scheme in Eq. (4) being imposed 
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over the nonlinear approximation equation (10). 

Therefore, Eq. (9) can be rewritten as follows 
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To solve the nonlinear equation (8) iteratively, the four-

point rotated nonlocal arithmetic mean discretization 

scheme is used to transform the nonlinear equation into a 

linear equation. In this paper, however, we consider the 

nonlocal discretization scheme in Eq.(5) being imposed 

over the nonlinear approximation equation (7). 

 

3.  FORMULATION OF HSAOR ITERATIVE 

METHOD 

Let us consider the nonlinear equation in Eq.(8) that 

will be solved by using HSAOR, HSSOR and FSSOR 

iterative methods. In this section, we start on how to 

derive the formulation of the SOR iteration family. 

Therefore, based on the half-sweep approximation 

equation in Eq. (7) the general scheme of the FSSOR 

method can be stated as
21,22,23
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where ω and ( )k
iU  represent as a relaxation factor and the 

kth represent as a relaxation factor and the kth the 

estimation for corresponding exact solutions respectively. 

Actually the FSSOR iterative method in Eq. (12) was 

proposed by Young
24,25,26

. Apart from this, Abdullah
14

 first 

introduces the concept of the half-sweep iteration in 

solving any system of linear equations. The concept of 

half-sweep iteration is actually to reduce the 

computational complexities during iteration process. Thus, 

in this paper, we implement the HSSOR iterative method 

in solving the nonlinear elliptic boundary value problem. 

Based on Eq. (8) the general scheme for HSSOR iterative 

method can be given as 
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for 1,3,2,1 −= nj L  and ( ) ++−≤−= iniji ,1,2%2 . Due 

to the advantage of the SOR iteration family with one 

parameter ω, Hadjidimos
24

 has proposed the Accelerated 

Over Relaxation (AOR) iterative method which involves 

two-parameters, r  and ω. However, this AOR method can 

be categorized as one of the full-sweep iterative methods. 

Basically these two arbitrary parameters can be fully 

exploited to produce iterative methods that have faster 

rates of convergence. Thus, in this paper, we investigate 

the effectiveness of the HSAOR iterative method in 

solving two-dimensional nonlinear elliptic boundary 

value problems in Eq. (1). Based on Eq. (11), the general 

scheme for the HSAOR method can be given as  
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for 1,3,2,1 −= nj L  and ( ) ++−≤−= iniji ,1,2%2 .  

As taking r=ω , the HSAOR method reduces to 

the HSSOR method, whereas choosing 1== rω , this 

method is called as the Half-Sweep Gauss-Seidel (HSGS) 

iterative method. In this study, however, the FSSOR 

iterative methods will be used as a control method. The 

general algorithm for the HSAOR iterative methods to 

solve the linear equation (7) would be generally described 

in Algorithm 1. For the implementation of the AOR 

iteration family, a good choice for the value of the 

parameters r  and ω can be used to accelerate the 

convergence rate of the iteration process. In practice, the 

optimal value of both parameters r  and ω will be obtained 

by implementing several computer programs and then the 

best approximate value of these parameters is chosen in 

which its number of iterations is the smallest. Then the 

general algorithm for the HSAOR iterative method in 

Eq.(12) would be described in Algorithm 1. 

 

Algorithm 1 : HSAOR Scheme 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i. Initialize  ( ) 10

~

0 10and0U −←ε←  

ii. Assign the optimal value of r  and ω  
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iv.   Convergence test. If the convergence criterion i.e 

( ) ( ) 10k

~

1k

~
10UU

−+ =ε≤−  is satisfied, go step  (v). 

Otherwise go back to step (iii) 

v.   Display approximate solutions 
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4.  NUMERICAL EXPERIMENTS 

In order to validate the performance of the FSSOR, 

HSSOR, and HSAOR iterative methods together with the 

four-point rotated nonlocal arithmetic mean scheme, three 

nonlinear elliptic example problems were tested. For the 

sake of comparison, three criteria will be considered for 

these three proposed iterative methods which are number 

of iterations, execution time (in seconds) and maximum 

absolute error.  

 

Example 1
25

  
 

  
( ) ( ) [ ] [ ]1,01,0,,exp ×=Ω∈=+++ yxuuuuuuu yxyyxx  

  (13) 

the exact solution of problem (13) was defined by 

Ω∂+= ,),( 2 yxyxu  

Example 2
25

 
 

  
( ) ( ) [ ] [ ]1,01,0,,exp ×=Ω∈=+++ yxuuuuuuu yxyyxx    (14) 

And the exact solution of problem (14) was defined by 

( ) Ω∂π−= ,sinexp),( yxyxu  

Example 3
25

 
 

( ) ( )( ) ( ) [ ] [ ]1,01,0,,cosexp1sinexp 2 ×=Ω∈π−π−π−π−=

−+

yxyxyx

uuuu yyyxx

                                                                                        (15) 

And the exact solution of problem (15) was defined by 

( ) Ω∂π−= ,sinexp),( yxyxu  

 

  

Following to these three examples, all the results of 

numerical experiments obtained by the FSSOR, HSSOR, 

and HSAOR iterative methods have been recorded in 

Table 1. 

Clearly it can be observed from Table 1 that the FSSOR, 

HSSOR, and HSAOR have been implemented at different 

grid sizes 32, 64, 128, 256, and 512. According to 

numerical results in Table 1 for the case of second order 

finite difference schemes, the HSAOR iterative method 

with the four-point rotated nonlocal arithmetic mean 

scheme shows the superiority in terms of number of 

iterations and the execution time compared with the 

FSSOR and HSSOR methods. 

   

5.  CONCLUSION 

In this research, we present the performance of the 

HSAOR iterative method associated with the four-point 

rotated nonlocal arithmetic mean scheme and the second 

order finite difference approximation scheme for solving 

the nonlinear elliptic boundary value problems. Based on 

Table 1, numerical results showed that HSAOR method 

solved the proposed problems with least number of 

iterations as compared to the HSSOR and FSSOR 

methods. Meanwhile, in terms of execution time, HSAOR 

method computes with the fastest time for all considered 

mesh sizes. In the aspect of accuracy, numerical solutions 

obtained for test problems 1 to 3 are comparable for all 

the tested iterative methods. Finally, it can be concluded 

that the HSAOR method is superior to HSSOR and 

FSSOR methods. This is mainly because of the 

implementation of the HSAOR method with parameters   

r  and ω that can be used to accelerate the convergence 

rate of the iteration process. For future works, this study 

can be extended to investigate the performance analysis 

of block point iterative methods
26,27

 and weighted 

parameter iterative methods
28,29

. 
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    (a)         (b) 

Figure.1. Finite grid networks for the full-sweep (a) and half-sweep (b) in case m=8 

 

TABLE 1. Comparison between number of  iterations (K), the execution time ( seconds) and maximum errors for the 

iterative methods using  example at grid sizes 32,64,128,256,512 

 
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 

 
Number of iterations K 

M FSSOR HSSOR HSAOR FSSOR HSSOR HSAOR FSSOR HSSOR HSAOR 

32 136 97 92 135 91 87 130 90 86 

64 266 194 181 258 184 171 259 182 168 

128 524 387 356 522 365 341 514 358 334 

256 1035 772 728 1026 725 664 1025 713 673 

512 2058 1538 1487 2050 1439 1264 2049 1416 1293 

 
Execution time (seconds) 

M FSSOR HSSOR HSAOR FSSOR HSSOR HSAOR FSSOR HSSOR HSAOR 

32 0.11 0.06 0.03 0.11 0.05 0.02 0.11 0.05 0.02 

64 0.39 0.33 0.13 0.34 0.12 0.09 0.34 0.26 0.13 

128 2.73 1.21 0.79 1.95 1.23 0.55 1.30 0.70 0.47 

256 21.27 9.85 6.02 8.12 6.80 4.60 8.67 3.83 3.31 

512 168.81 67.81 51.28 62.80 48.26 33.21 65.14 32.19 28.06 

 
Maximum errors 

M FSSOR HSSOR HSAOR FSSOR HSSOR HSAOR FSSOR HSSOR HSAOR 

32 9.62e-02 5.89e-02 5.70e-02 2.87e-04 2.41e-02 2.41e-02 3.24e-04 1.80e-02 1.80e-02 

64 9.63e-02 5.87e-02 5.71e-02 7.17e-05 2.41e-02 2.42e-02 8.12e-05 1.81e-02 1.81e-02 

128 9.63e-02 5.87e-02 5.80e-02 1.79e-05 2.42e-02 2.42e-02 2.03e-05 1.82e-02 1.82e-02 

256 9.63e-02 5.87e-02 5.85e-02 4.48e-06 2.42e-02 2.42e-02 5.07e-06 1.82e-02 1.82e-02 

512 9.63e-02 5.87e-02 5.86e-02 1.12e-06 2.42e-02 2.42e-02 1.27e-06 1.82e-02 1.82e-02 

 


