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Abstract : In this study, we derive a finite difference approximation equation from the discretization of the one-

dimensional linear time-fractional diffusion equations by using the Caputo’s time fractional derivative. A linear 

system will be generated by the Caputo’s finite difference approximation equation. Then the resulting of the linear 

system has been solved using Half-Sweep Gauss-Seidel (HSGS) iterative method in which its effectiveness will be 

compared with the existing Gauss-Seidel method (known as Full-Sweep Gauss-Seidel (FSGS)). An example of the 

problem is presented to test the effectiveness the proposed method. The findings of this study show that the 

proposed iterative method is superior compared with the FSGS method. 
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1.0 Introduction 

According to previous studies [1,2,3,4,5] the use of fractional partial differential equations 

(FPDEs) have attracted many researchers in mathematics, physics, engineering and chemistry to 

obtain a numerical and/or analytical solutions of the fractional problems. For Instant, a fractional 

derivative replaces the first-order space partial derivative in a diffusion model and lead to slower 

diffusion [5]. So to solve  a one-dimensional diffusion model with constant coefficients, analytical 

solutions are available using iterative methods. 

Based on numerical techniques applied to the time fractional diffusion equations (TFDE), 

many proposed methods have been initiated such as transform methods [6], finite elements together 

with the method of lines [3], explicit and implicit finite difference methods [3,7]. Although the 

explicit methods are conditionally stable, this finite difference schemes are available in the literature 

[8]. 

Implicit study, The time fractional diffusion equations (TFDE) problem will be discretised.By 

imposing the implicit finite difference scheme and Caputo fractional operator the approximation 

equations can be used to construct a linear system at each time level. To solve the linear systems, the 

concept of  the iterative methods have been discussed by many researchers such as Young [9], 

Hackbusch [10] and Saad [11] and it can be  observed that there are several families of iterative 

methods. In addition to these iterative methods,  the concept of block iteration has also been 

introduced by Evans [13], Ibrahim and Abdullah [12], Yousif and Evans [14,23] to show the 

efficiency of its computation cost.  

The main objective of this paper is to study  the effectiveness of the Half-Sweep Gauss-Seidel 

(HSGS) iterative method for solving time-fractional parabolic partial differential equations  

(TPPDE’s) by using the Caputo’s implicit finite difference approximation equation. To show the 

capability of the HSGS method, we also implement the Full-Sweep Gauss Seidel (FSGS) iterative 

methods being used as a control method. 

  To indicate the efficiency of this HSGS method, let us consider time-fractional diffusion 

equation (TFDE’s) be defined as 
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where a(x), b(x) and c(x) are known functions or constants, whereas α is a parameter which refers to 

the fractional order of time derivative. 

The organization of the paper is as follows: In Section 2 and 3, we approximate the formula 

of the Caputo’s fractional derivative operator and numerical procedure for solving time fractional 

diffusion equation (1) by means of the implicit finite difference method. In Section 4, formulation of 

the HSGS iterative method is introduced. In Section 5 we give a  numerical example and the results 

and conclusion are given in Section 6. 

 

2. 0 Preliminaries 
 

Before developing the discrete equation of Problem (1). We introduce some basic definitions 

 

Definition 2.1 [8] The Riemann-Liouville fractional integral operator , 
J of order-  is defined as 
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Definition 2.2[8] The Caputo’s fractional partial derivative operator, 
D  of order -  is defined as 
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The purpose of this paper is examine the Half-Sweep Gauss-Seidel (HSGS) iterative method which is 

compared with the Full-Sweep Gauss-Seidel (FSGS) iterative method for solving Problem (1) with 

variable coefficients. In solving numerical of Problem (1), we derive numerical approximations based 

on the Caputo’s derivative definition with Dirichlet boundary conditions and consider the non-local 

fractional derivative operator. This approximation equation can be categorized as unconditionally 

stable scheme. On strength of Problem (1), the solution domain of the problem has been restricted to 

the finite space domain  x0 , with 10  , whereas the parameter   refers to the fractional 

order of space derivative. To solve of Problem (1), let us consider the initial boundary conditions of 

Problem (1)  

 

              ,,0 0 tgtU   and t     ,xf,xU 0                                 

where    ,tg,tg 10 and  ,xf are given functions. For a discretize approximation to the time fractional 

derivative in Eq. (1), we consider Caputo’s fractional partial derivative of order  , defined by [8,9] 
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3.0 Caputo’s Implicit Finite Difference Approximation 
  

Based on Eq. (4), the formulation of Caputo’s fractional partial derivative of the first order 

approximation method is given as  
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Before discretizing Problem (1), we assume that the solution domain of the problem be partitioned 

uniformly. To do this, we consider some positive integers m and n in which the grid sizes in space and 

time directions for the finite difference algorithm are defined as  
m

xh
0

  and 

n

T
tk  respectively. Based on these grid sizes, we construct the uniformly grid network of the 

solution domain where the grid points in the space interval  ,0  are indicated as the numbers 

,ihxi  m,...,,,i 210 and the grid points in the time interval  T,0  are labeled 

,jkt j  n,...,,,j 210 . Then the values of the function  txU ,  at the grid points are denoted as 

 
jiji txUU ,,  . By using Eq. (5) and the implicit finite difference discretization scheme, the 

Caputo’s implicit finite difference approximation equation of Problem (1) to the grid point centered at 

   nk,iht,x ji   is given as 

 

   


 
n

j

jnijnijk UU
1

,1,,


                                                                                                            

 

                ,
4

1
2

4

1
,,2,2,2,,22 niininiinininii UcUU

h
bUUU

h
a                                       (6)                                                                                                                      

for i=1,2...,m-1. 

 

According to Eq. (6), this approximation equation is known as the fully implicit finite 

difference approximation equation which is consistent first order accuracy in time and second order in 

space. Basically,  the approximation equation (6) can be rewritten based on the specified time level. 

For instance, we have for 2n  : 
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According to Eq. (7b), it can be seen that the tridiagonal linear system can be constructed in matrix 

form as  
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4.0   Formulation of Half-Sweep Gauss-Seidel 
 

As mentioned in section 4 and see , the coefficient  matrix A of  Eq.(8) has a large scale and sparse. 

The concept of various iterative methods has  been initiated and conducted by many researchers such 

as, Young [9], Hackbusch [10], Saad [11], Evans [13], Yousif and Evans [14,23], and Othman and 

Abdullah [21]. To Solve the tridiagonal linear system, Abdullah [24] initiated Half-Swep iteration, 

which is the most known and widely used iterative techniques to solve linear systems.In addition to 

that, the iteration has been extensively used by many researchers; see Ibrahim and Abdulah [12], 

Othman and Abdullah [21], Suliaman et al.[20,22], Aruchunan and Sulaiman [17,18,19], Muthuvalu 

and Sulaiman [16] and Yousif and Evans [14,23].The main advantage of the Half-Sweep iteration is 

to reduce the computational complexities during iteration process. As a result of this concept and 

using HSGS method, the coefficient matrix of the linear system (8) can be expressed as summation of 

the three matrices 

VLDA                 (11) 

where D, L and V are diagonal, lower triangular and upper triangular matrices respectively.  

Thus, Half-Sweep Gauss-Seidel iterative method can be defined generally as 
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where 

 k

U
~

represents an unknown vector at k
th
 iteration. The implementation of the HSGS iterative 

method can be described in Algorithm 1. 

 

Algorithm 1: HSGS method 
i. Initializing all the parameters. Set 0k . 

 
ii. For npnpnppi ,,2,,2,    and npnpnppi ,,2,,2,     

 Calculate 
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iii. 

Convergence test. If . 

   
10

~1~
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kk

UU is satisfied, go 

to Step (iv). Otherwise go back to Step (ii). 

 

iv. Display approximate solutions. 

 

 

5.0 Numerical Experiment 
 

In this section, an example of the time fractional diffusion equation is given to illustrate the accuracy 

and effectiveness properties of the Full-Sweep Gauss-Seidel (GS) and Half-Sweep Gauss-Seidel 

(HSGS) iterative methods. For comparison purposes three criteria have been considered such as 

number of iterations, execution time (in seconds) and maximum absolute error at three different 

values of α = 0.25, 0.50 and 0.75. For implementation of three iterative schemes, the convergence test 

considered the tolerance error, which is fixed as  = 1010 .   

Let us consider the time fractional initial boundary value problem be given as [15] 
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where the boundary conditions are stated in fractional terms 
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and the initial condition 

               20 x,xU  .                                                                                                                  (15)  

From Problem (13), as taking 1 , it can be seen that Eq. (13) can be reduced to the standard 

diffusion equation  
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subjected to  the initial condition 
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and boundary conditions 

   ,2,0 kttU             kttU 2, 2   , 

Then the analytical solution of Problem (16) is obtained as follows  

  .2, 2 ktxtxU   

Now by applying the series  
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All results of numerical experiments for Problem (13), which were obtained from implementation of 

FSGS and HSGS iterative methods have been recorded in Table 1 at different values of mesh sizes, m 

= 128, 256, 512, 1024, and 2048. 
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TABLE 1. Comparison of number iterations, the execution time ( seconds) and maximum errors for the 

iterative methods using example at 75.0,50.0,25.0  

 

M 

 

Method 

α = 0.25 α = 0.50 α = 0.75 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 

 
FSGS 21017 37.01 9.97e-

05 

13601 23.92 9.85e-

05 

6695 12.1 1.30e-

04 

HSGS      5682 5.28 9.96e-

05 

3671 3.77 9.84e-

05 

1805 2.18 1.29e-

04 

256 

 
FSGS 77231 332.11 1.00e-

04 

50095 213.28 9.90e-

05 

24732 104.04 1.30e-

04 

HSGS 21017 34.81 9.97e-

04 

13601 22.72 9.85e-

05 

6695 11.41 1.30e-

04 

512 FSGS 281598 2522.20 1.02e-

04 

183181 162.08 1.01e-

05 

90783 831.58 1.32e0-

4 

HSGS 77231 333.92 1.00e-

04 

50095 214.58 9.90e-

05 

24732 105.44 1.30e-

04 

1024 FSGS 1017140 18485.43 1.09e-

04 

663971 2454.53 1.08e-

04 

330622 5870.9 1.40e-

04 

HSGS 90783 771.42 1.32e-

04 

183181 1568.23 1.00e-

04 

90783 771.42 1.32e-

04 

2048 FSGS 3631638 58914.30 1.38e-

04 

2380946 17795.25 1.38e-

04 

1192528 8794.26 1.71e-

04 

HSGS 1017140 17798.81 1.09e-

04 

663971 11482.81 1.4e-

04 

330622 5653.5 1.40e-

04 

 

 

6.0  Conclusion 

 

For the numerical solution of the time fractional diffusion problems, the paper presents the derivation 

of the Caputo’s implicit finite difference approximation equations in which this approximation 

equation leads to a tridiagonal linear system. From observation of all experimental results by 

imposing the FSGS and HSGS iterative methods, it is obvious at 250. that number of iterations  

have declined approximately by 71.99-91.07% corresponds to the HSGS iterative method compared 

with the FSGS methods. Again in terms of execution time, implementations of HSGS method are 

much faster about 69.78-95.82% than the FSGS methods. It means that the HSGS method requires 

smaller number of iterations and computational time at 250.  as compared with FSGS iterative 

methods. Based on the accuracy of both iterative methods, it can be concluded that their numerical 

solutions are in good agreement.  
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