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Abstract. In this paper, we present the concept of Half-sweep Accelerated OverRelaxation (HSAOR) iterative method 
with a nonlocal discretization scheme for solving nonlinear two-point boundary value problems. Second order finite 
difference scheme has been used to derive the half-sweep finite difference (HSFD) approximations of the problems. Then, 
the nonlocal discretization scheme is applied in order to transform the system of nonlinear approximation equations into 
the corresponding system of linear equations. Numerical results showed that HSAOR method is superior compared to Full-
sweep Gauss-seidel (FSGS), Full-sweep Successive OverRelaxation (FSSOR) and Full-sweep Accelerated Over 
Relaxation (FSAOR) methods. 

INTRODUCTION 

Currently, nonlinear two-point boundary value problems have a lot of attention by the researchers. This is because 
many physical problems in science and engineering can be described mathematically by using the nonlinear equations 
model. However, it is usually difficult to obtain closed-form solutions either analytically or numerically. In most cases, 
only approximate solutions can be expected. The nonlinear two-point boundary value problem constantly arise from 
scientific research, modeling of nonlinear phenomena, chemical reactions and the solution of optimal control problems 
[1-6]. Therefore, many researchers have been discussed and developed some numerical methods for obtaining 
approximate solutions to nonlinear two-point boundary value problems such as finite difference method [1], finite 
element method [2], shooting method [3], spline approximation method [4] and Sinc-Galerkin method [5]. In fact, 
many studies on various iterative methods have carried out to speed up the convergence rate in solving any system of 
linear equations. For instance, Young [7, 8, 9], Hackbusch [10] and Saad [11] have already elaborated and discussed 
the concept of various iterative methods. 

 
Subsequently, Abdullah [12] first introducesthe half-sweep iteration (HSI) concept in solving two-dimensional 

Poisson equations. This iteration concept is absolutely one of the efficient methods in solving any system of linear 
algebraic equations. As a matter of fact, the concept of HSI is actually to reduce the computational complexities during 
iteration process, since the implementation of the method will only consider nearly half of whole node points in a 
solution domain respectively. In conjunction with this concept, further analysis has beenconducted in [13,14,15,16, 
17, 18]. 

 
In this paper, however, we analyze the performance of HS iterationconcepts with AOR iterative method namely 

HSAOR by using the approximation equation based on second order finite difference scheme for solving the proposed 
problems. Therefore, by imposing the second-order finite difference method, the second-order half-sweep nonlinear 
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finite difference approximation equation will be derived to represent the proposed nonlinear problems. Then the 
approximation equation needs to be linearized over the nonlocal discretization method in order to form a system of 
linear equations. By the reason of linear system can be generated from the approximation equation, then the numerical 
solution of the proposed nonlinear problems will be obtained by implementing four proposed point iterative methods 
such as HSAOR, FSAOR, FSSOR and FSGS iterative methods together with the nonlocal discretization 
approximation scheme.  

 
To analyze the performance of these four proposed iterative methods, let us consider a nonlinear two-point 

boundary value problem being defined as 

UUxg
dx

Ud ,,2

2

bxa,  
 

(1) 

 
subject to the boundary conditions 

10 )(,)( bUaU   
 

 
and 0 , 1 , and ),( Uxg  are constants and a nonlinear continuous function, respectively.  

 
In formulating various iterative schemes such as FS and HS iterations, we need to build the finite grid network as 

a guide for development and implementation of the proposed methods. Therefore, to derive the formulation of second-
order FSFD and HSFD approximation equations, let us consider the finite grid network being used as shown in Figure 
1. Then the finite grid network can be used to facilitate us to implement the corresponding proposed algorithms of 
three iterative methods. According to the point iterations, the implementation of these four iterative methods will be 
applied onto the node points of the same type until the iterative convergence fixed is achieved. Based on Figure 1, 
apparently the implementation of the HSiterative method just involves by nearly half of the whole node points as 
shown in Figure 1(b) compared with FS iterative method. 

 
a) 

 
b) 

Figure 1 a) and b) show distribution of uniform solid node points for the FS and HS cases respectively. 
 
Based on Figure 1, the following discussion will be restricted to divide the solution domain of problems into 

2,2 pm p  subinternals in which the distance  of the subinterval, x   is defined in Eq. (2). 

1,00 mnh
m

abx  
 

(2) 

 

FORMULATION OF NONLOCAL DISCRETIZATION SCHEME 

Before constructing the (HSFD) approximation equation of problem (1), let us consider several nonlocal half-
sweep discretization schemes being given as follows [19]      
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By using the approach of second-order half-sweep finite difference discretization scheme, the corresponding 
approximation equations for problem (1) can be easily shown as 

1,6,4,2,0,,,2 21
2

22 niUUUfhUUU niiii  (6) 

where 

 
h
UUUxgUUUf ii

iini 4
,,,, 22

,21  (7) 

Actually, Eq. (7) is called as the nonlinear term of the problem (1). To solve the nonlinear system in Eq. (6), the 
nonlocal discretization scheme is used to transform the nonlinear system into the form of a system of linearequations. 
In this paper, however, we consider the nonlocal discretization scheme in Eq. (4) being imposed over the nonlinear 
approximation equation (8). Therefore, Eq. (7) can be rewritten as follows 

 
h
UUUUxgUUUf iiii

ini 4
,

2
,,,, 2222

21  (8) 

FORMULATION OF ACCELERATED OVER RELAXATION METHOD 

In this section, we present on how to derive the formulation of the HSAOR methods. Therefore, based on the 
approximation equation in Eqs. (6) and (8), the general scheme of the HSSOR method can be stated as 
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whereω and 1,6,4,2, nU k

i represent as a relaxation factor and the kth represent as a relaxation factor and the 
kth estimation for corresponding exact solutions respectively. Actually the FSSOR iterative method in Eq. (9) was 
proposed by Young and [20] and [21, 22]. In addition to that, a good choice for the value of the parameter ω can be 
used to accelerate the convergence rate of the iteration process. In practice, the optimal value of ω in range 21  
will be obtained by implementing several computer programs and to chose the optimum value of ω is chosen in which 
its number of iterations is the smallest. 

 
Apart from this method, the AOR method which is one of the family of FSSOR presents a two weighted 

parameters, r  and ω as suggested by Hadjidimos [23]. This method can be indicated as FSAOR. These two arbitrary 
parameters can be fully exploited to produce iterative methods that have faster rates of convergence. Thus, in this 
paper, we implement the HSAOR iterative method in solving the nonlinear two-point boundary value problems in Eq. 
(1). Based on Eq. (9), the general scheme for the HSAOR method can be given as  
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for 1,6,4,2 ni .  
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According to the Full-sweep case and taking r , the FSAOR method reduces to the FSSOR method, whereas 
choosing 1r , this method is called as FSGS method. In this study, the FSGS iterative methods will be used as 
control methods. The general algorithm for the HSAOR iterative methods to solve the linear equation (9) would be 
generally described in Algorithm 1. 
 

Algorithm 1 : HSAOR scheme [24] 
i. Initialize 100 10,0iU  
ii. Assign the value of ω and  
iii. Calculate 1k

iU  using 

1
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iv. Check the convergence test, 101 10k
i

k
i UU . If yes, go to step (v). Otherwise go back 

to step (iii). 
v. Display approximate solutions. 

 

NUMERICAL EXPERIMENTS 

In order to validate the performance of the HSAOR, FSAOR, FSSOR and FSGS iterative methods together with 
the nonlocal approach, three nonlinear example problems were tested. For the sake of comparison, three criteria will 
be considered for these three proposed iterative methods which are number of iterations, execution time (in seconds) 
and maximum absolute error.  

 
Example 1 [25] 

 10for,02 '" xeyy y  (11) 
subject to the boundary conditions 

0)1(0)0( yy   
with exact solution were defined by 

 .2log2exp
1

2log)( x
x

xy    (12) 

Example 2 [26]  

 10for,
2
3 2" xyxy  (13) 

 
subject to the boundary conditions 
 11,40 yy   
 
with exact solution were defined by 

 .
1

4
2x

xy  (14) 

Example 3 [27] 

10for,5.05.0 '" xeexy
x

xy xyxy  
 
(15) 

subject to the boundary conditions 
01],2log[0 yy  

r
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From above three examples, results of numerical experiments obtained have been summarized in Table 1. In the 
implementation approach, the convergence test considered the tolerance error 1010 . 

CONCLUSION 

In this paper, the performance of HSAOR method for the solution of nonlinear two-point boundary value problem 
associated with the second order finite difference approximation scheme has been investigated. Based on Table I, 
numerical results showed that HSAOR method solved the proposed problems with least number of iterations as 
compared to the FSGS, FSSOR and FSAOR methods. Meanwhile, in terms of execution time, HSAOR method 
computes with the fastest time for all considered mesh sizes. In the aspect of accuracy, numerical solutions obtained 
for test problems 1 to 3 are comparable for all the tested iterative methods. Finally, it can be concluded that the HSAOR 
method is superior to FSGS, FSSOR and FSAOR methods. This is mainly because of the reduction of computational 
complexity in which the HSAOR method will only consider approximately half of all interior node points in a solution 
domain during iteration process. 
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