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Abstract. The aim of this paper is to investigate the effectiveness  of the Full-Sweep AOR 

Iterative method by using Full-Sweep Caputo’s approximation equation to solve space-

fractional diffusion equations. The governing space-fractional diffusion equations were 

discretized by using Full-Sweep Caputo’s implicit finite difference scheme  to generate a 

system of linear equations. Then, the Full-Sweep AOR iterative method is applied to solve the 

generated linear system. To examine the application of FSAOR method two numerical tests are 

conducted to show that the FSAOR method is superior to the FSSOR and FSGS methods.  

1. Introduction 
Many problems in science, industry and engineering can be formulated as mathematical model in a 
form of fractional partial differential equations (FPDE’s) [1,2]. Some different numerical methods 
have been proposed for solving fractional partial differential equations (FPDE’s): Neamaty [3] solved 
fractional partial differential equations by using wavelet operational method, method of  line tranform 
of the space-fractional Fokker-Plank equations [4] and modified decomposition method for the 
analytical solution of space fractional diffusion equation [5]. 

Space-fractional diffusion equations are a type of fractional partial differential equations.  
Therefore many reaserchers  solved the problems numerically. For instance Saadatmandi and  
Dehghan [6] used a tau approach for solution space-fractional diffusion equation, Feng et al [7] 
developed second-order approximation for space-fractional diffusion equation with variable coefficient 
and Sousa [8] applied Spline for solving space-fractional diffusion.  

To solve the proposed problem, let us describe some basic definitions and mathematical 
preliminaries of the fractional derivative theories which are required for our subsequent development. 
 
        Definition 1.[9] The Riemann-Liouville fractional integral operator , 

J of order-  is 
defined as 

              ( )∫
x

0

1 dt,tf)t-x(
)(

1
)x(fJ 


= 0 , 0x                                                                      (1)                                      

                                     

        Definition 2.[10] The Caputo’s fractional partial derivative operator, 
D  of order -  is 

defined as 
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with ,m1m   mN, 0x  .We have following properties when ,m1m   mN, 0x  : 
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where function [ ]  ≤ , N0= ,...2,1,0 and  . = Gamma function. 

           To construct the approximation equation of problem.(1), this work considers implicit finite 
difference scheme with Full-Sweep Caputo’s operator. Both scheme and operator applied over Eq.(3) 
will derive Full-Sweep Caputo’s implicit finite difference approximation equation. Actually this 
approximation equation has been discussed in constructing a linear system for time-fractional diffusion 
equations and space-fractional diffusion equations [11,12,13]. Since the linear system will be 
generated via this approximation equation, this paper consider the Full-Sweep Accelerated Over-
Relaxation (AOR) method as linear solver. 
 

           According to development of standard AOR iterative method, this methods has been introduced 
by Hadjidimos [14]. This concept of this method is based on the point iteration concept together with 
two accelerated parameters. Actually this iterative method is one of the efficient point iterative 
methods. Due to the advantages of the AOR method for solving linear systems, the aim of this paper is 
to construct and examine the effectiveness of the FSAOR iterative method for solving space-fractional 
diffusion equations (SFDE’s) based on the Caputo’s implicit finite difference approximation equation. 
To examine the effectiveness of the FSAOR method, we also implement the FSSOR and FSGS 
iterative methods being used control methods. 

Now let us consider the space-fractional diffusion equation being given as : 
 

            
( )

( )
( )

( )
( )

( ) ( ) ( )t,xft,xWxc
x∂

t,xW∂
xb

x∂

t,xW∂
xa

t∂

t,xW∂
+++=





                               (3) 

subject to the initial condition ( ) ( ) ,≤x≤0,xfx,0W = and the Dirichlet boundary conditions  

( ) ( ),tgt0,W 0= ( ) ( ) .T≤t0,tgt,W 1 <=  

 

2. Caputo’s Impliciti Finite Difference Approximation for SFDE’s  
In the section, the process of solving the space-fractional diffusion equations is described in Section 3. 

Before that let ,
k

h


 where k is positive integer. By applying the operator (2), we get for m=2 that  

     
( ) ( )∑

1-i

0j

n1,j--inj,-in1,j-ijh,

ni
WW2-Wg

x∂

t,xW∂

=

+ += 





                                                                           (4)  

where 
 








3

(2h) -

h,
 and    .1g -22

j


jj 

  

Then by imposing the implicit finite difference scheme and the Caputo’s operator in Eq.(4) 
over Eq.(3), the Full-Sweep Caputo’s implicit finite difference scheme can be written as 

( ) ( )
( )

ni,ni,i

n1,-in1,i

i

1i

0j

n1,-j-inj,-in1,j-ijh,i1-ni,ni, fWC
h2

W-W
bWW2-WgaW-W ∑ ++++=

+

=

+


             (5)        

for i = 1,2,4,…m-1.  Then the approximation equation (5) can be simplified again as     

( ) ( )
ni,ni,ni,in1,-in1,i

i

1i

0j

n1,-j-inj,-in1,j-ijh,i1-ni, f-WWC-W-W
2h

b
-WW2-Wga-W ∑  

 ++= +

=

+              
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(6) After simplifying from Eq.(6), we have   
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By referring to Eq.(7), be expanded to get the following approximation equation               

in1,iini,in1,-iin2,-iin3,-iii fWrWqWpWsWR =+++++ +                                                                        (8)                                                   
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Thus by referring Eq.(8), we can develop to a linear system in matrix form as  

      
~~
fWA =                                                                                                                                           (9)      

3. Full-Sweep AOR Iterative Method 

By considering linear system in Eq.(9), it is clear that the characteristics of its coefficient matrix is 
large scale and sparse. In previous studies, a lot of works have been done to establish various iterative 
methods such as Young [15],  Hackbusch [16], Saad [17]. To solve the linear system which is 
generated by the Caputo’s implicit finite difference approximation equation, we consider the FSAOR 
method which is known as the Standard Accelerated Over-Relaxation (AOR) iterative method [11]. 
This iterative method  is the most known and widely using for solving any linear systems [12,13]. To 
derive the formulation of FSAOR method in matrix form, we consider  the coefficient matrix A (9) 
being expressed as summation of the three matrices for FSAOR method 

               U-L-DA=                                                                                                                       (10) 
where D, L and U are diagonal, lower triangular and upper triangular matrices respectively. From 
Eq.(10),  the general scheme for FSAOR iterative method can be written as [14,18] 

                  

( )

( ) ( ) ( )[ ]
( )

( ) fL-DWD-1D-UL-DW
1-

k~
1

1k~

 +++=
+

                          
(11) 

where 
( )k~

V represents an unknown vector at k
th

 iteration.  As   , this iterative method (11) will be 

named as the FSSOR [14,15], while 1  we get the FSGS method. Based on Eq.(11), the 

general algorithm for FSAOR iterative method to solve linear system (9) would be generally described 
in Algorithm 1.[11] 
 

Algorithm 1: FSAOR method 

i. 
Initialize 0←

~

V and 10
10


 . 
 

ii. For 1,,2,1  nj   implement 

      For 121  m,,,i  calculate  
( )

( ) ( ) ( )[ ]
( )

( ) fL-DWD-1D-UL-DW
1-

k~
1

1k~

 +++=
+

 

iii 
Convergence test. If the convergence criterion i.e

( ) ( )
10

k~1k~

10≤W-W =
+

 is satisfied, go 

to Step (iii). Otherwise go back to Step (ii). 
iv Display approximate solutions. 
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4. Numerical Experiment 
In this section , two numerical examples are illustrated  to show acccuray and effectiveness of the 
proposed method. Three criteria will be considered in comparison for FSGS, FSSOR and FSAOR such 
as K (number  of  iterations), Time (execution time in seconds ) and Max Error (maximum error) at 

1.8 and5.1,2.1   and several mesh sizes as 128, 256, 512,1024 and 2048. During the 
implementation of numerical experiments, the convergence test considered the tolerance error 

1010 . The results of numerical simulations which were obtained from applications of the FSGS, 
FSSOR and FSAOR iterative methods for the following examples 1 and 2 have been recorded in 
Tables 1 and 2 respectively. 

 
Example  1 : [10] 
 

( )
( )

( )
( ),tx,p

x∂

tx,W∂
xd

t∂

tx,W∂
+=





                                                                                           (12) 

The exact solution of problem (12) is ( ) ( ) ( )1tsin1xtx,W 2 ++= . 

 
Examples 2   : [10] 
 

( ) ( )
( ) ,e1-2xx3

x∂

tx,W∂
x)2.1(

t∂

tx,W∂ t-2+=




                                                                           (13) 

The exact solution of this problem is ( ) -t2 x)e-(1xtx,W = . 

 
TABLE 1. Comparison between K (number of iterations), TIME (the execution time in seconds) and Max Error 

(maximum errors)  for the iterative methods using Example 1 at 8.1,5.1,2.1  

 

M 

 

Method 
  = 1.2   = 1.5   = 1.8 

K Time 
(Seconds) 

Max 
Error 

K Time 
(Seconds) 

Max 
Error 

K Time 
(Seconds) 

Max 
Error 

128 

 
FSGS 74 1.48 2.37e-02 251 4.95 6.20e-04 930 18.29 3.99e-02 

FSSO R 66 1.36 2.37e-02 205 4.08 6.21e-04 733 14.47 2.42e-02 

FSAO R 65 1.32 2.37e-02 188 3.88 6.21e-04 269 5.35 3.99e-02 

256 

 
FSGS 152 11.64 2.44e-02 666 51.01 5.69e-04 3029 233.01 3.97e-02 

FSSO R 129 10.13 2.44e-02 545 42.29 6.69e-04 1361 107.33 2.39e-02 

FSAO R 128 10.00 2.44e-02 370 28.88 5.69e-04 756 58.90 3.97e-02 

512 FSGS 352 99.64 2.47e-02 1780 550.52 5.36e-04 9840 755.31 3.96e-02 

FSSO R 278 85.9 2.47e-02 1459 144.73 5.35e-04 3472 725.25 2.37e-02 

FSAO R 270 84.05 2.47e-02 983 104 5.35e-04 2497 703 3.96e-02 

1024 FSGS 709 672.27 2.49e-02 4750 1870.68 5.13e-04 21847 5259.97 3.95e-02 

FSSO R 607 140 2.49e-02 3906 756.12 5.13e-04 5539 1259.97 2.36e-02 

FSAO R 577 125 2.49e-02 3640 689 5.13e-04 5220 1119 2.36e-02 

2048 FSGS 1547 1227.21 2.50e-02 8320 4348.68 5.02e-04 47322 8979.18 3.93e-02 

FSSO R 1230 577.00 2.52e-02 6320 3348.68 5.09e-04 13643 3979.18 2.30e-02 

FSAO R 1150 540 2.52e-02 5950 3102 5.09e-04 13203 3920 2.30e-02 
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TABLE 2. Comparison between K (number of iterations), TIME (the execution time in seconds) and Max Error 

(maximum errors) for the iterative methods using Example 2 at 8.1,5.1,2.1  

 

M 

 

Method 
  = 1.2   = 1.5   = 1.8 

K Time 
(Seconds) 

Max 
Error 

K Time 
(Seconds) 

Max 
Error 

K Time 
(Seconds) 

Max 
Error 

128 
 

FSGS 57 1.42 1.80e-01 182 4.41 5.44e-02 569 13.70 8.88e-04 

FSSO R 49 1.19 1.80e-01 156 3.77 5.44e-02 332 3.24 1.25e-04 

FSAO R 48 0.93 1.80e-01 133 1.41 5.44e-02 148 1.52 1.25e-04 

256 
 

FSGS 117 10.95 1.84e-01 481 45.32 5.58e-02 931 174.77 4.09e-04 

FSSO R 103 5.45 1.84e-01 225 14.80 5.58e-02 890 36.00 1.44e-04 

FSAO R 97 3.58 1.84e-01 197 10.93 5.58e-02 457 16.66 1.44e-04 

512 FSGS 221 25.31 1.86e-01 732 153.67 5.65e-02 1635 427 1.47e-04 

FSSO R 128 20.69 5.39e-01 553 86.22 1.28e-02 1490 374.84 1.54e-04 

FSAO R 106 18.71 5.39e-01 525 83.02 1.28e-02 1357 193.83 1.53e-04 

1024 FSGS 480 115.89 1.89e-01 1923 714.51 5.69e-02 5937 948.83 1.49e-04 

FSSO R 271 172.33 5.45e-01 1463 218 1.32e-02 4619 2210.72 1.25e-04 

FSAO R 213 168 5.45e-01 1298 198 1.32e-02 4329 2103 1.25e-04 

2048 FSGS 1186 557.00 1.88e-01 6241 1259.31 5.85e-02 8482 5345.02 1.20e-04 

FSSO R 880 424.00 1.92e-01 2530 953.23 5.73e-02 7710 4120.81 2.30e-04 

FSAO R 815 398 1.92e-01 2506 912 5.73e-02 6520 3834 2.30e-04 

 

5. Conclusion 

This paper investigates the effectiveness the FSAOR iterative method to get numerical solutions of 
space-fractional diffusion equations. Throught the results obtained for examples 1 and 2, it manifestly 
shows that the application of FSAOR iteration which uses two accelerated parameters can  reduce 
number of iterations and computational time as shown in Tables 1 and 2. Again this accuracy of 
numerical solutions of this method is comparable with the FSSOR and FSGS method. Since the 
FSAOR method is one of Full-Sweep iteration family, our future work will be extended to investigate 
the effectiveness of the Half-Sweep iteration family [19,20]. 
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