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Abstract

The aim of this paper deals with the application of Half-Sweep Accelerated
Over- Relaxation (HSAOR) iterative method using an unconditionally implicit
finite difference approximation equation from the discretization of the one-
dimensional linear time-fractional diffusion equations by using the Caputo’s
time fractional derivative. The Caputo’s implicit finite difference
approximation equation leads a linear system which is solved by using the
proposed HSAOR iterative method. Throughout implementations of two
numerical experiments conducted, it has shown that the HSAOR method is
superior as compared with FSAOR and FSOR methods.

Keywords: Caputo’s fractional derivative; Implicit finite difference; HSAOR
method.

1. Introduction

From previous studies [1,2,3,4,5] many scientific and engineering have proposed to
get fractional partial differential equations (FPDE’s) a numerical and/or analytical
approximate solutions of the fractional problems. Actually various numerical
techniques that can be used to solve the time fractional diffusion equations (TFDE’s),
such as transform methods [6], finite elements together with the method of lines [3],
explicit and implicit finite difference methods [3,7]. Based on the finite difference
methods, there exist three discretization schemes can be constructed such as explicit,
semi-implicit and implicit.
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To get a finite difference solution of the time-fractional diffusion equations (TFDE’s),
problem needs to be discretized via finite difference discretization scheme by
imposing the implicit finite difference scheme and Caputo’s fractional operator. Then
corresponding approximation equations can be used to construct a linear system at
each time level. To solve the linear system, various iterative methods have been
proposed and discussed by Young [8], Hackbusch [9] and Saad [10]. From the
previous studies of iterations, there exists several families of iterative methods. In
addition to these iterative methods, the concept of block iteration has also been
introduced by Evans [11], and furthermore explanation of this block concept have
been extended by Ibrahim and Abdullah [12], Yousif and Evans [13,14] in which
these block iterative methods can be one of the efficient iterative methods.
To improve the convergence rate of iterative process the half-sweep iteration concept
is introduced by Abdullah [15] via Explicit Decoupled Group (EDG), iterative method
to solve two dimensional Poisson equations. Due to the advantage of this concept, this
half-sweep iterative methods have been extensively studied by many researchers; see
Ibrahim and Abdulah [12], Yousif and Evans [13,14], Othman and Abdullah [16],
Sulaiman, Hasan and Othman [17], Aruchunan and Sulaiman [18,19], Muthuvalu and
Sulaiman [20], Saudi and Sulaiman [21,22,23], Fauzi and Sulaiman [24], Hasan and
YitHoe [25], Sulaiman [26] and Akhir [27].
As mentioned the advantages of AOR method [28] and half-sweep iteration from
previous studies, we examine the application of the Half-Sweep Accelerated Over-
Relaxation (HSAOR) iterative method for solving time-fractional diffusion equations
(TFDE’s) by using the Caputo’s implicit finite difference approximation equation. To
test performance of the HSAOR method, we also implement the Full-Sweep
Successive Over-Relaxation (FSSOR) iterative method being used as control methods
and Full-Sweep Accelerated Over-Relaxation (FSAOR) iterative method.
To investigate the performance of HSAOR method, let us consider time-fractional
diffusion equation (TFDE’s) be defined as
o ™~
TUCL UL V8L, ¢ € @
where a(x), b(x) and c¢(x) are known functions or constants, whereas o is a parameter
which refers to the fractional order of time derivative.
The outline of this paper is as follows: In Sections 2 and 3 the preliminaries and the
Half-Sweep Caputo’s implicit approximation equation are presented. Then Section 4
deals with derivation of family of AOR methods. In which, formulation of the
HSAOR iterative method is introduced. In Section 5 shows numerical example and its
results and conclusion is given in Section 6.

2. Preliminaries

Before constructing the approximation equation of problem (1), the following are
Half-Sweep Caputo’s implicit finite difference and some basic definitions given for
fractional derivative theory
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Definition 1. [29] The Riemann-Liouville fractional integral operator, J* of order-«
is defined as

J €= ﬁgc—zif@m >0,x>0 @

Definition 2.[29] The Caputo’s fractional partial derivative operator, D“ of order-a
is defined as

D* = =_dt, o >0 3
f‘:/ F@_aj“__tj—mﬂ a ( )

with m—I<a<m,meN, x>0

As mentioned in the previous section of getting numerical solution of problem (1),
firstly, we construct implicit finite difference approximate equation based on the
Caputo’s derivative definition with Dirichlet boundary conditions and consider the
non-local fractional derivative operator. This approximation equation can be
categoried as unconditionally stable scheme. To solve problem (1), the solution
domain of the problem has been restricted to the finite space domain 0 < x <y, with

0 <a <1, whereas the parameter « refers to the fractional order of time derivative.
Consider problem (1), associated with the boundary and initial conditions as follow

U0.0)=g, (V€1 =2, C

and the initial condition

U0 = €.

where g, (:g ; (:and f ¢:are given functions. To get a discretize approximation to

the time fractional derivative in Eq. (1), we consider Caputo’s fractional partial
derivative of order a, which is defined as [29,8]

’ I * = ~q
6U(x,t): \J@ut s’(—s/ ds, t>0, O<a<lI 4)
ot re-1, o
3. Half-Sweep Caputo’s Implicit Finite Difference Approximation

To derive the Caputo’s implicit finite difference approximation section, let us
consider Eq.(4) to show the formulation of Caputo’s fractional partial derivative of
the first order approximation method which is given as

u n \
Dt Ui,n = O-a'k E]wfjci’”—j‘” - Ui"’_«i ~ (5)
where
1
o-a k =
: F(—a]—aza
and

a)_(l::j]—a — g._]\ﬁ—a
J —~

To facilitate us in discretizing problem (1), let the solution domain of the problem be
partitioned uniformly. To do this, we consider some positive integers m and »n in
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which the grid sizes in space and time directions for the finite difference algorithm are

defined as 4 = Ax = r=0 and k=4t = r respectively. According to these grid sizes,
m n
we develop the uniformly grid network of the solution domain where the grid points

in the space interval |,y Jare shown as the numbers x, =ik, i=0,1,2,...,m and the
grid points in the time interval |7 _]are labeled ¢, = jk, j=0,12,...,n. Then the
values of the function U €, at the grid points are denoted as U,, =U€,,¢, , By

using the formulation in Eqg. (5) and the implicit finite difference discretization
scheme, the Half-Sweep Caputo’s implicit ﬁnite\difference approximation equation of

problem (1) to the reference grid point at (i,tj O jk:can be shown as

n « N
0-,1,]( Z]wj (][,n—jJr] - Ul',ﬂ*_/ ~
Jj=
Ji ~ 1 N (6)
=4a,; W (][—2,11 - 2Ui,n + Ui+2,n /+ bi E (]i+2,n - Ui*Zﬁ /+ CiU[’” ’

fori=2,4...,m-2.

Actually, this half-sweep approximation equation is classified as the fully implicit
finite difference approximation equation which is consistent first order accuracy in
time and second order in space. To construct the linear system, then the
approximation equation (6) can be rewritten based on the specified time level. For
instance, we have for n > 2:

n ~N
« -
o-a,k Z]wj /vi,n—ﬁ'l _Ui,n—j R piUi—Z,n + qui,n + ’/;'Ui+2,n’ (7)
j=

where
a. b.

1 l

R
a

p;

2h?’
a. b.

v, =—5+—

Y 4h? 4h
Also, we get forn = 1,

-pU. 5, +q;Ui,1 ~1Uin=fip 1=24..m=2 (8)
where

CU_/‘%’:]: q; =0,k =9 1ip=0a1Up-
For the convenience in solving linear systems in Eq. (7) and (8), Let us consider the
approximation equation (8) being used in constructing the tridiagonal matrix form as
AU = f 9)

q, =¢;, —

where
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q: -7
— Py 61: -7 ,
4= — Ps ‘I; 7
~Pus Gt Ty
: s Ny
q = l/2,1 U Usy = U,y U,z _T’

T
f=KtpUy fu fo o fosr FuastPuUni_

4. Formulation of Half-Sweep Accelerated Over-Relaxation

Refer to the linear system (9), it can be seen that the characteristic of the coefficient
matrix of the linear system has large scale and sparse. It means that the iterative
methods are suitable option to solve the linear system [8]. Therefore, we consider the
application of HSAOR method as linear solver (9). Particularly, the HSAOR method
is essentially the extension of the FSAOR iterative method. The main purpose of the
half-sweep iteration is to reduce the computational complexities during iteration
process. Development of the HSAOR method is the combination between the half-
sweep iteration concept and Accelerated Over-Relaxation (AOR) method. Let the
linear system (9) be expressed as summation of the three matrices

A=D—-L-V (10)
where D, L and V are diagonal, lower triangular and upper triangular matrices
respectively.

According to Eq. (10), the HSAOR iterative method can be defined generally as [28] :

U= Q-oL Y Pr+ 6-ol+€-pDUCpO-0L™ (11)
where U (‘]represents an unknown vector at k™ iteration. Also the implementation of
the HSAOR iterative method may be described in Algorithm 1.

Algorithm 1: HSAOR method
i. Initializing all the parameters. Set £ =0.
ii. For j=12,...,n—1,n and

i=24,,..., m—4,m— 2 Calculate
U = O-oLZ P+ §-0l+ €GP U pO-0L' ]

iii. Convergence test. If the convergence criterion i.e
-~ €1J €
u -U

Otherwise go back to Step (ii).
iv. Display approximate solutions.

<e=10"" is satisfied, go to Step (iv).
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5. Numerical Experiment

In order to investigate the performance of the proposed iterative methods, we consider
two examples of the time fractional diffusion equations being used to demonstrate
effectiveness of the HSAOR compared with FSAOR and FSSOR iterative methods.
To do this, three criteria have been considered such as number of iterations, execution
time (in seconds) and maximum absolute error at three different values of a = 0.25,
0.50 and 0.75. For implementation of these three iterative schemes, the convergence

test considered the tolerance error, which is fixed as ¢ =707"".

Examples 1:[30]
Consider the following time fractional initial boundary value problem be given as

oU€t Ut

= — 0<a<[0<x<y, t>0, (12)
ot ox
where the boundary conditions are given in fractional terms
UO,t)=—22" ypry=p s (13a)
I'(a+1) I'(a+1)
and the initial condition
U€O =x". (13b)

From Problem (12), as taking « =1, it can be seen that problem (12) can be reduced
to the standard diffusion equation

~ 2 ~
W&t Uk o ey t50, (14)

ot ox
with the initial and boundary conditions
U€0 =x7, U0,t)=2kt, U(l,t)=10" +2kt.
Then the analytical solution of Problem (14) is obtained as follows
U(x,t)=x"+2kt.
Now by applying the series
Ulni)=§TVEDC 5@ U0) 1
=0 Ot" ml w=lico Of I'(no+i+1)

to U(x,t)for 0 <a <1, it can be shown that the analytical solution of problem (14) is
given as

t(l

U(x,t)=x" +2k —.
I'(o+1)

(15)

Examples 2: [30]

Let us consider the following time fractional initial boundary value problem be

defined as

QUL 10Ut
a2

where the boundary conditions are given in fractional terms

U0,t)=0, U(Lt)=¢", (17a)

~

= 0<a<l,0<x<y, t>0, (16)
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and the initial condition

U€O =x". (17b)
From problem (16), as taking « =1, it can be shown that Eg. (16) can also be reduced
to the standard diffusion equation

oUu€t . 1 ,doU&t

xP——= 0<x<vy, t>0. 18
ot 2 ox’ / (18)

Then the analytical solution of problem (18) is obtained as follows
U(x,t)=x"e".
Now by applying the series
Ulxt) = mz—l 0”U(x,0)ﬁ . im_, 5m"+iU().c,0) froti
= ot" nl w=tizo O™ [(na+i+l)
to U(x,t) for 0<a <1, it can be shown that the analytical solution of problem (18) is
stated as

tzz t2a t3a
+ + +...
I'(a+1) ['(2a+1) ['(3a+1)
All the simulations were implemented by C programming language. Results of
numerical simulations, which were obtained from implementation of FSSOR, FSAOR

and HSAOR iterative methods have been recorded in Tables 1 and 2 at different
values of mesh sizes, m = 128, 256, 512, 1024, and 2048.

U(x,t)=x"|1+ (19)

Table 1: Comparison of Number Iterations (K), The Execution Time (seconds) and
Maximum Errors for The Iterative Methods Using Examples 1 at « =0.25,0.50,0.75 .

M [Method a=0.25 a=0.50 a=0.75

K | Time | Max K | Time | Max K | Time | Max

Error Error Error

128 |FSSOR| 714 | 2.00 [9.95e-05 703 | 1.97 (9.84e-05 705 | 2.04 [1.29e-04
FSAOR| 657 | 1.93 [9.95e-05 615 | 1.83 [9.84e-05| 613 | 1.79 |1.29e-04
HSAOR| 517 | 1.78 [9.95e-05] 510 | 1.54 (9.84e-05 599 | 1.39 [1.29e-04
256 |[FSSOR|1461| 6.80 [9.95e-05| 769 | 3.98 [9.84e-05| 769 | 3.97 |1.29e-04
FSAOR| 870 | 6.38 [9.95e-05| 659 | 2.99 [9.84e-05/ 630 | 1.72 |1.29e-04
HSAOR| 857 | 3.02 [9.95e-05| 425 | 2.93 (9.84e-05 413 | 1.50 [1.29e-04
512 |FSSOR | 6239 | 56.20 [9.96e-05/3951 | 35.05 [9.84e-05/1821| 16.77 |1.29e-04
FSAOR| 4940 | 31.35 [9.96e-05/3080 | 22.62 [9.84e-05/1301 | 16.67 |1.29e-04
HSAOR| 870 | 6.54 |9.05-e05| 859 | 6.37 [9.84e-05 830 | 6.45 [1.29e-04
1024/ FSSOR [23626| 418.56 [9.97e-05/15229| 266.77 |9.85e-05| 7417 | 129.5 [1.30e-04
FSAOR|19033| 4.72 [9.97e-05(12232]101.21 [9.80-e05|5911 | 105.27 |1.30e-04
HSAOR| 4940 | 3.28 [9.96e-05/3080 | 42.68 [9.80e-05/1301 | 17.87 [1.29e-04
2048/ FSSOR [87211|3356.96/1.00e-04/56530[(2086.15(9.91e-05[27855|1047.77|1.30e-04
FSAOR|70547(1142.09(1.00e-04/{45700] 1342 [9.89e-05[22474/1002.85|1.30e-04
HSAOR|19033| 512.59 |1.00e-04{12232| 338.14 |9.85e-05/ 5911 | 157.02 {1.30e-04
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From the numerical result recorded in Table 1 by imposing the FSSOR, FSAOR and
HSAOR iterative methods, it is obvious at a =0.25 that number of iterations have
declined approximately by 27.59-86.05% corresponds to the HSAOR iterative method
as compared with FSSOR methods. Particularly in terms of execution time,
implementations of HSAOR method are much faster about 11.10-99.21% than
FSSOR methods. It means that the HSAOR method requires the less amount for
number of iterations and computational time as compared with FSAOR and FSSOR
iterative methods. For other value of a=0.50,0.75, it can be observed that their

conclusions are in line with o =0.25.

Table 2: Comparison of Number Iterations (K), The Execution Time (seconds) and
Maximum Errors for The Iterative Methods Using Examples 2 at « =0.25,0.50,0.75 .

M [Method a=0.25 o=0.50 a=0.75

K | Time | Max K | Time | Max K | Time | Max

Error Error Error
128 |FSSOR| 683 | 8.06 [1.95e-02] 671 | 6.04 |8.30e-02| 671 | 6.06 |1.37e-01
FSAOR| 370 | 6.19 |1.94e-02| 260 | 5.86 |8.29e-02| 257 | 5.80 [1.37e-01
HSAOR| 199 | 5.11 |1.95e-02| 154 | 5.04 |8.30e-02| 146 | 5.02 |1.37e-01
256 |FSSOR | 2281 | 28.42 |1.95e-02| 962 | 18.30 |8.30e-02| 724 | 8.18 [1.37e-01
FSAOR|1761| 19.30 |1.95e-02| 809 | 11.82 [8.29e-02| 291 | 7.39 |1.37e-01
HSAOR| 545 | 6.25 |1.95e-02| 328 | 5.70 |8.29e-02| 163 | 5.29 |1.37e-01
512 |FSSOR 8322 |127.84 |1.95e-02/ 9245 | 74.36 |8.29e-02/ 1728 | 32.08 [1.37e-01
FSAOR| 6746 |125.09 1.94e-02| 3240 | 63.93 [8.29e-02/ 1471 | 30.79 |1.37e-01
HSAOR| 2246 | 19.45 |1.95e-02| 1402 | 14.27 |8.29e-02| 625 | 9.09 |1.37e-01
1024{ FSSOR |29260] 980.21 |1.95e-02/14391| 590.41 (8.29e-02| 6925 | 243.11 |1.37e-01
FSAOR|25054| 866.80 |1.94e-02/12126| 435.44 8.29e-02| 5644 | 208.20 |1.37e-01
HSAOR| 8478 |117.00|1.94e-02/ 5313 | 76.75 |8.29e-02| 2461 | 38.54 |1.37e-01

2048 FSSOR (94577(7372.44(1.92e-0256681|1684.52/8.29e-0223718|1825.23|1.37e-01
FSAOR|91984(6092.40]1.94e-02/44563(1428.60/8.29¢-02[20921(1609.51(1.37e-01
HSAOR|405411109.00/1.94e-0219650] 557.72 8.29e-02/ 9198 | 268.45 |1.37e-01

From the numerical result recorded in Table 2, «=0.25 it can be observed «=0.25
that number of iterations have declined approximately by 57.13-76.10% corresponds
to the HSAOR iterative method as compared with FSSOR methods. Similar to
execution time, implementations of HSAOR method are much faster about 36.60-
88.06% than FSSOR methods. It means that the HSAOR method requires the less
amount for number of iterations and execution time at as compared with FSAOR and
FSSOR iterative methods. For other value of a =0.50,0.75, it can be concluded that

their conclusions are in line with a =0.25.



Caputo’s Implicit Solution of Time-Fractional Diffusion Equation 3477

6. Conclusion

For the numerical solution of the time-fractional diffusion problems, this paper applied
the derivation of the Caputo’s implicit finite difference approximation equations in
which this approximation equation leads a tridiagonal linear system. Based on the
numerical result recorded in Tables 1 and 2, it can be pointed out, that the HSAOR
method requires the less amount for number of iterations and execution time at as
compared with FSAOR and FSSOR iterative methods. The observation on the
accuracy of proposed iterative methods show that their numerical solutions are in good
agreement.
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