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Abstract 

 

The aim of this paper deals with the application of Half-Sweep Accelerated 

Over- Relaxation (HSAOR) iterative method using an unconditionally implicit 

finite difference approximation equation from the discretization of the one-

dimensional linear time-fractional diffusion equations by using the Caputo’s 

time fractional derivative. The Caputo’s implicit finite difference 

approximation equation leads a linear system which is solved by using the 

proposed HSAOR iterative method. Throughout implementations of two 

numerical experiments conducted, it has shown that the HSAOR method is 

superior as compared with FSAOR and FSOR methods. 

 

Keywords: Caputo’s fractional derivative; Implicit finite difference; HSAOR 

method. 

 

 

1. Introduction 

From previous studies [1,2,3,4,5] many scientific and engineering have proposed to 

get fractional partial differential equations (FPDE’s) a numerical and/or analytical 

approximate solutions of the fractional problems. Actually various numerical 

techniques that can be used to solve the time fractional diffusion equations (TFDE’s), 

such as transform methods [6], finite elements together with the method of lines [3], 

explicit and implicit finite difference methods [3,7]. Based on the finite difference 

methods, there exist three discretization schemes can be constructed such as explicit, 

semi-implicit and implicit. 



3470 A. Sunarto et al 

To get a finite difference solution of the time-fractional diffusion equations (TFDE’s), 

problem needs to be discretized via finite difference discretization scheme by 

imposing the implicit finite difference scheme and Caputo’s fractional operator. Then 

corresponding approximation equations can be used to construct a linear system at 

each time level. To solve the linear system, various iterative methods have been 

proposed and discussed by Young [8], Hackbusch [9] and Saad [10]. From the 

previous studies of iterations, there exists several families of iterative methods. In 

addition to these iterative methods, the concept of block iteration has also been 

introduced by Evans [11], and furthermore explanation of this block concept have 

been extended by Ibrahim and Abdullah [12], Yousif and Evans [13,14] in which 

these block iterative methods can be one of the efficient iterative methods. 

To improve the convergence rate of iterative process the half-sweep iteration concept 

is introduced by Abdullah [15] via Explicit Decoupled Group (EDG), iterative method 

to solve two dimensional Poisson equations. Due to the advantage of this concept, this 

half-sweep iterative methods have been extensively studied by many researchers; see 

Ibrahim and Abdulah [12], Yousif and Evans [13,14], Othman and Abdullah [16], 

Sulaiman, Hasan and Othman [17], Aruchunan and Sulaiman [18,19], Muthuvalu and 

Sulaiman [20], Saudi and Sulaiman [21,22,23], Fauzi and Sulaiman [24], Hasan and 

YitHoe [25], Sulaiman [26] and Akhir [27]. 

As mentioned the advantages of AOR method [28] and half-sweep iteration from 

previous studies, we examine the application of the Half-Sweep Accelerated Over-

Relaxation (HSAOR) iterative method for solving time-fractional diffusion equations 

(TFDE’s) by using the Caputo’s implicit finite difference approximation equation. To 

test performance of the HSAOR method, we also implement the Full-Sweep 

Successive Over-Relaxation (FSSOR) iterative method being used as control methods 

and Full-Sweep Accelerated Over-Relaxation (FSAOR) iterative method. 

To investigate the performance of HSAOR method, let us consider time-fractional 

diffusion equation (TFDE’s) be defined as 

t,xUxc
x

t,xUxb
x

t,xUxat,xU
2

2

α

α

 (1) 

where a(x), b(x) and c(x) are known functions or constants, whereas α is a parameter 

which refers to the fractional order of time derivative. 

The outline of this paper is as follows: In Sections 2 and 3 the preliminaries and the 

Half-Sweep Caputo’s implicit approximation equation are presented. Then Section 4 

deals with derivation of family of AOR methods. In which, formulation of the 

HSAOR iterative method is introduced. In Section 5 shows numerical example and its 

results and conclusion is given in Section 6. 

 

 

2. Preliminaries 

Before constructing the approximation equation of problem (1), the following are 

Half-Sweep Caputo’s implicit finite difference and some basic definitions given for 

fractional derivative theory 
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Definition 1. [29] The Riemann-Liouville fractional integral operator, αJ of order-α  

is defined as 

0x,0α,dttftx
α

1xfJ
x

0

αα
 (2) 

 

Definition 2.[29] The Caputo’s fractional partial derivative operator, αD  of order-α  

is defined as 

0α,dt
tx

tf
αm

1xfD
x

0
1mα

m
α

 (3) 

with ,mα1m m N, 0x  

As mentioned in the previous section of getting numerical solution of problem (1), 

firstly, we construct implicit finite difference approximate equation based on the 

Caputo’s derivative definition with Dirichlet boundary conditions and consider the 

non-local fractional derivative operator. This approximation equation can be 

categoried as unconditionally stable scheme. To solve problem (1), the solution 

domain of the problem has been restricted to the finite space domain γx0 , with 

1α0 , whereas the parameter  refers to the fractional order of time derivative. 

Consider problem (1), associated with the boundary and initial conditions as follow 

,tgt,U,tg)t,0(U 10   

and the initial condition 

,xf0,xU  

where ,tg,tg 10 and ,xf are given functions. To get a discretize approximation to 

the time fractional derivative in Eq. (1), we consider Caputo’s fractional partial 

derivative of order α , which is defined as [29,8] 

1α0,0t,dsst
t

sxu
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1
t
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 (4) 

 

 

3. Half-Sweep Caputo’s Implicit Finite Difference Approximation 

To derive the Caputo’s implicit finite difference approximation section, let us 

consider Eq.(4) to show the formulation of Caputo’s fractional partial derivative of 

the first order approximation method which is given as 
n

1j
jn,i1jn,i

α
jk,αn,i

α
t UUωσUD  (5) 

where 

αk,α kα1α1
1σ  

and 

.1jjω α1α1α
j  

To facilitate us in discretizing problem (1), let the solution domain of the problem be 

partitioned uniformly. To do this, we consider some positive integers m and n in 
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which the grid sizes in space and time directions for the finite difference algorithm are 

defined as 
m

0γxh  and 
n
Ttk respectively. According to these grid sizes, 

we develop the uniformly grid network of the solution domain where the grid points 

in the space interval γ,0  are shown as the numbers ,ihxi m,...,2,1,0i  and the 

grid points in the time interval T,0  are labeled ,jkt j n,...,2,1,0j . Then the 

values of the function t,xU  at the grid points are denoted as jij,i t,xUU . By 

using the formulation in Eq. (5) and the implicit finite difference discretization 

scheme, the Half-Sweep Caputo’s implicit finite difference approximation equation of 

problem (1) to the reference grid point at jk,iht,x ji  can be shown as 

,UcUU
h4

1bUU2U
h4
1a

UUωσ

n,iin,2in,2iin,2in,in,2i2i

n

1j
jn,i1jn,i

α
jk,α

 (6) 

for i=2,4...,m-2. 
Actually, this half-sweep approximation equation is classified as the fully implicit 

finite difference approximation equation which is consistent first order accuracy in 

time and second order in space. To construct the linear system, then the 

approximation equation (6) can be rewritten based on the specified time level. For 

instance, we have for 2n : 
n

1j
n,2iin,iin,2iijn,i1jn,i

α
jk,α ,UrUqUpUUωσ  (7) 

where 

,
h4

b
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Also, we get for n = 1, 
2m...,4,2i,fUrUqUp 0,i1,2ii1,ii1,2ii  (8) 

where 

1ω α
j , ,qσq ik,αi  0,ik,α0,i Uσf . 

For the convenience in solving linear systems in Eq. (7) and (8), Let us consider the 

approximation equation (8) being used in constructing the tridiagonal matrix form as 

~~
fUA  (9) 

where 
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4. Formulation of Half-Sweep Accelerated Over-Relaxation 

Refer to the linear system (9), it can be seen that the characteristic of the coefficient 

matrix of the linear system has large scale and sparse. It means that the iterative 

methods are suitable option to solve the linear system [8]. Therefore, we consider the 

application of HSAOR method as linear solver (9). Particularly, the HSAOR method 

is essentially the extension of the FSAOR iterative method. The main purpose of the 

half-sweep iteration is to reduce the computational complexities during iteration 

process. Development of the HSAOR method is the combination between the half-

sweep iteration concept and Accelerated Over-Relaxation (AOR) method. Let the 

linear system (9) be expressed as summation of the three matrices 

VLDA  (10) 

where D, L and V are diagonal, lower triangular and upper triangular matrices 

respectively. 

According to Eq. (10), the HSAOR iterative method can be defined generally as [28] : 

fLωDβUDβ1LωβVβLωDU 1k

~

11k

~  (11) 

where 
k

~
U represents an unknown vector at k

th
 iteration. Also the implementation of 

the HSAOR iterative method may be described in Algorithm 1. 

 

Algorithm 1: HSAOR method 

i. Initializing all the parameters. Set 0k . 
ii. For n,1n,,2,1j   and 

2m,4m,,,4,2i   Calculate 

fLωDβUDβ1LωβVβLωDU 1k

~

11k

~
 

iii. Convergence test. If the convergence criterion i.e 

10
k~1k~

10εUU  is satisfied, go to Step (iv). 

Otherwise go back to Step (ii). 

iv. Display approximate solutions. 

 

 



3474 A. Sunarto et al 

5. Numerical Experiment 

In order to investigate the performance of the proposed iterative methods, we consider 

two examples of the time fractional diffusion equations being used to demonstrate 

effectiveness of the HSAOR compared with FSAOR and FSSOR iterative methods. 

To do this, three criteria have been considered such as number of iterations, execution 

time (in seconds) and maximum absolute error at three different values of α = 0.25, 

0.50 and 0.75. For implementation of these three iterative schemes, the convergence 

test considered the tolerance error, which is fixed as = 1010 . 

 

Examples 1:[30] 

Consider the following time fractional initial boundary value problem be given as 

0t,γx0,1α0,
x

t,xU
t

t,xU
2

2

α

α

, (12) 

where the boundary conditions are given in fractional terms 

,
)1α(

kt2)t,0(U
α

,
)1α(

kt2)t,(U
α

2  (13a) 

and the initial condition 
2x0,xU . (13b) 

From Problem (12), as taking 1α , it can be seen that problem (12) can be reduced 

to the standard diffusion equation 

0t,γx0,
x

t,xU
t

t,xU
2

2

, (14) 

with the initial and boundary conditions 
,x0,xU 2
 ,kt2)t,0(U  .kt2)t,(U 2  

Then the analytical solution of Problem (14) is obtained as follows 

.kt2x)t,x(U 2
 

Now by applying the series 

1m
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t
)0,x(U

!n
t

t
)0,x(U)t,x(U  

to )t,x(U for ,1α0  it can be shown that the analytical solution of problem (14) is 

given as 

)1α(
tk2x)t,x(U

α
2 . (15) 

 

Examples 2: [30] 

Let us consider the following time fractional initial boundary value problem be 

defined as 

0t,γx0,1α0,
x

t,xUx
2
1

t
t,xU

2

2
2

α

α

, (16) 

where the boundary conditions are given in fractional terms 

,0)t,0(U  ,e)t,1(U t
 (17a) 
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and the initial condition 
2x0,xU . (17b) 

From problem (16), as taking 1α , it can be shown that Eq. (16) can also be reduced 

to the standard diffusion equation 

0t,γx0,
x

t,xUx
2
1

t
t,xU

2

2
2

. (18) 

Then the analytical solution of problem (18) is obtained as follows 
t2ex)t,x(U . 

Now by applying the series 

1m

0n 1n

iαn1m

0i im n

im nn

n

n

)1iαn(
t

t
)0,x(U

!n
t

t
)0,x(U)t,x(U  

to )t,x(U  for ,1α0  it can be shown that the analytical solution of problem (18) is 

stated as 

...
)1α3(

t
)1α2(

t
)1α(

t1x)t,x(U
α3α2α

2
 (19) 

All the simulations were implemented by C programming language. Results of 

numerical simulations, which were obtained from implementation of FSSOR, FSAOR 

and HSAOR iterative methods have been recorded in Tables 1 and 2 at different 

values of mesh sizes, m = 128, 256, 512, 1024, and 2048. 

 

Table 1: Comparison of Number Iterations (K), The Execution Time (seconds) and 

Maximum Errors for The Iterative Methods Using Examples 1 at 75.0,50.0,25.0α . 

 

M Method α = 0.25 α = 0.50 α = 0.75 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 

 

FSSOR 714 2.00 9.95e-05 703 1.97 9.84e-05 705 2.04 1.29e-04 

FSAOR 657 1.93 9.95e-05 615 1.83 9.84e-05 613 1.79 1.29e-04 

HSAOR 517 1.78 9.95e-05 510 1.54 9.84e-05 599 1.39 1.29e-04 

256 

 
FSSOR 1461 6.80 9.95e-05 769 3.98 9.84e-05 769 3.97 1.29e-04 

FSAOR 870 6.38 9.95e-05 659 2.99 9.84e-05 630 1.72 1.29e-04 

HSAOR 857 3.02 9.95e-05 425 2.93 9.84e-05 413 1.50 1.29e-04 

512 FSSOR 6239 56.20 9.96e-05 3951 35.05 9.84e-05 1821 16.77 1.29e-04 

FSAOR 4940 31.35 9.96e-05 3080 22.62 9.84e-05 1301 16.67 1.29e-04 

HSAOR 870 6.54 9.05-e05 859 6.37 9.84e-05 830 6.45 1.29e-04 

1024 FSSOR 23626 418.56 9.97e-05 15229 266.77 9.85e-05 7417 129.5 1.30e-04 

FSAOR 19033 4.72 9.97e-05 12232 101.21 9.80-e05 5911 105.27 1.30e-04 

HSAOR 4940 3.28 9.96e-05 3080 42.68 9.80e-05 1301 17.87 1.29e-04 

2048 FSSOR 87211 3356.96 1.00e-04 56530 2086.15 9.91e-05 27855 1047.77 1.30e-04 

FSAOR 70547 1142.09 1.00e-04 45700 1342 9.89e-05 22474 1002.85 1.30e-04 

HSAOR 19033 512.59 1.00e-04 12232 338.14 9.85e-05 5911 157.02 1.30e-04 
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From the numerical result recorded in Table 1 by imposing the FSSOR, FSAOR and 

HSAOR iterative methods, it is obvious at 25.0α  that number of iterations have 

declined approximately by 27.59-86.05% corresponds to the HSAOR iterative method 

as compared with FSSOR methods. Particularly in terms of execution time, 

implementations of HSAOR method are much faster about 11.10-99.21% than 

FSSOR methods. It means that the HSAOR method requires the less amount for 

number of iterations and computational time as compared with FSAOR and FSSOR 

iterative methods. For other value of 75.0,50.0α , it can be observed that their 

conclusions are in line with 25.0α . 

 

Table 2: Comparison of Number Iterations (K), The Execution Time (seconds) and 

Maximum Errors for The Iterative Methods Using Examples 2 at 75.0,50.0,25.0α . 

 

M Method α = 0.25 α = 0.50 α = 0.75 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 FSSOR 683 8.06 1.95e-02 671 6.04 8.30e-02 671 6.06 1.37e-01 

FSAOR 370 6.19 1.94e-02 260 5.86 8.29e-02 257 5.80 1.37e-01 

HSAOR 199 5.11 1.95e-02 154 5.04 8.30e-02 146 5.02 1.37e-01 

256 FSSOR 2281 28.42 1.95e-02 962 18.30 8.30e-02 724 8.18 1.37e-01 

FSAOR 1761 19.30 1.95e-02 809 11.82 8.29e-02 291 7.39 1.37e-01 

HSAOR 545 6.25 1.95e-02 328 5.70 8.29e-02 163 5.29 1.37e-01 

512 FSSOR 8322 127.84 1.95e-02 9245 74.36 8.29e-02 1728 32.08 1.37e-01 

FSAOR 6746 125.09 1.94e-02 3240 63.93 8.29e-02 1471 30.79 1.37e-01 

HSAOR 2246 19.45 1.95e-02 1402 14.27 8.29e-02 625 9.09 1.37e-01 

1024 FSSOR 29260 980.21 1.95e-02 14391 590.41 8.29e-02 6925 243.11 1.37e-01 

FSAOR 25054 866.80 1.94e-02 12126 435.44 8.29e-02 5644 208.20 1.37e-01 

HSAOR 8478 117.00 1.94e-02 5313 76.75 8.29e-02 2461 38.54 1.37e-01 

2048 FSSOR 94577 7372.44 1.92e-02 56681 1684.52 8.29e-02 23718 1825.23 1.37e-01 

FSAOR 91984 6092.40 1.94e-02 44563 1428.60 8.29e-02 20921 1609.51 1.37e-01 

HSAOR 40541 1109.00 1.94e-02 19650 557.72 8.29e-02 9198 268.45 1.37e-01 

 

 

From the numerical result recorded in Table 2, 250.  it can be observed 250.  

that number of iterations have declined approximately by 57.13-76.10% corresponds 

to the HSAOR iterative method as compared with FSSOR methods. Similar to 

execution time, implementations of HSAOR method are much faster about 36.60-

88.06% than FSSOR methods. It means that the HSAOR method requires the less 

amount for number of iterations and execution time at as compared with FSAOR and 

FSSOR iterative methods. For other value of 75.0,50.0α , it can be concluded that 

their conclusions are in line with 25.0α . 
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6. Conclusion 

For the numerical solution of the time-fractional diffusion problems, this paper applied 

the derivation of the Caputo’s implicit finite difference approximation equations in 

which this approximation equation leads a tridiagonal linear system. Based on the 

numerical result recorded in Tables 1 and 2, it can be pointed out, that the HSAOR 

method requires the less amount for number of iterations and execution time at as 

compared with FSAOR and FSSOR iterative methods. The observation on the 

accuracy of proposed iterative methods show that their numerical solutions are in good 

agreement. 
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