
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Quarter-sweep Nonlocal Discretization Scheme with QSSOR Iteration
for Nonlinear Two-point Boundary Value Problems
To cite this article: M. U. Alibubin et al 2016 J. Phys.: Conf. Ser. 710 012023

 

View the article online for updates and enhancements.

This content was downloaded from IP address 36.69.50.121 on 20/05/2018 at 08:21

https://doi.org/10.1088/1742-6596/710/1/012023


 

 

Quarter-sweep Nonlocal Discretization Scheme with QSSOR 

Iteration for Nonlinear Two-point Boundary Value Problems 

M. U. Alibubin
1
 , A. Sunarto

2 
, and J. Sulaiman

3 

1,2,3 
Faculty of Science and Natural Resources, 

Universiti Malaysia Sabah, Malaysia. 

E-mail: 
1
mrusran@gmail.com, 

2
andang99@gmail.com, 

3
jumat@ums.edu.my 

Abstract. The aim of this paper is to consider the Quarter-sweep Successive Over Relaxation 

(QSSOR) iteration for solving nonlinear two-point boundary value problems. The second order 

finite difference (FD) method is applied to derive the quarter-sweep nonlocal discretization 

scheme for the sake of transforming the system of nonlinear approximation equations into the 

corresponding system of linear equations. The formulation and the implementation of the 

methods are discussed. In addition, the numerical results by solving the proposed problems 

using QSSOR method are included and compared with the Full-sweep Successive Over 

Relaxation (FSSOR) and Half-sweep Successive Over Relaxation (HSSOR) methods. 

1. Introduction

For the numerical solution of nonlinear two-point boundary value problems (TPBVP), the paper deals 

with the nonlocal finite difference methods which are used to determine the numerical value at the 

whole grid points with difference grid sizes. In fact again, the solution to a nonlinear TPBVP must 

satisfy the boundary conditions. Actually, the nonlinear TPBVP plays the important role to describe 

various physical problems in sciences, economics and engineering which are designed mathematically 

by using nonlinear equation model [1-6]. However in many cases, the nonlinear two-point boundary 

value problem does not have exact analytic solution. Therefore numerical techniques must be used to 

get the approximate solution of the problems. Nonlinear boundary value problems have attracted much 

attention from many researchers. For instance, a finite difference (FD) method has been proposed in 

recent works [1], finite element method [2], shooting method [3], spline approximation method [4] and 

Sinc-Galerkin method [5]. Literally, there are various iterative methods also have been studied to yield 

the fast numerical solution of linear systems [7, 8, 9]. Recently, Akhir et al [10] suggested a Half-

Sweep Modified SOR (HSMSOR) method by bringing together the concept of the half-sweep 

iterations and the modified SOR method to solve two-dimensional Helmholtz equation. Actually, the 

concept of the half-sweep (HS) iteration method has been introduced by Abdullah [11] via the Explicit 

Decoupled Group (EDG) method to solve two-dimensional Poisson equations. Similarly, further 

investigations have been extensively conducted in [12, 13, 14, 15, 16]. In 2000, Othman and Abdullah 

continued this concept by introducing quarter-sweep (QS) iterative method via the Modified Explicit 

Group (MEG) method to solve two-dimensional Poisson equations [17]. Further studies to prove the 

effectiveness of the QS iterative methods have been carried out by [18, 19, 20, 21]. The fundamental 

concept of the HS and QS iterative methods is to reduce the computational complexities during 

iteration process in which HS and QS iterations will only consider nearly half and quarter of all 
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interior node points in a solution domain respectively. Thus, in this paper we examined the 

applications of the QS iteration concept with SOR iterative method by using approximation equation 

based on quarter-sweep nonlocal discretization scheme for solving proposed problems. The standard 

SOR iterative method is also called as the Full-Sweep Successive Over Relaxation (FSSOR) method. 

Meanwhile, combinations of the SOR method with HS and QS iterations are called as Half-Sweep 

Successive Over-Relaxation (HSSOR) and Quarter-Sweep Successive Over-Relaxation (QSSOR) 

methods respectively. 

To investigate the performance of these three proposed iterative methods, let us consider the general 

form of a nonlinear two-point boundary value problem being defined as 

 UUxg
dx

Ud
 ,,

2

2

bxa ,  (1) 

subject to the boundary conditions 

10 )(,)(   bUaU

and 0 , 1 , and  UUxg ,,  are constants and a nonlinear continuous function, respectively. As

mentioned in the first paragraph, the importance of problem (1) deals with many physical problems. 

Therefore, the study investigates the effectiveness of QS nonlocal discretization scheme in solving the 

problem (1) via QSSOR iteration. 

In formulating various iterative schemes such as full-, half- and quarter-sweep iterations, finite grid 

network can be used as a guide as well as to facilitate us in terms of development and implementation 

of the corresponding proposed algorithms for the proposed methods.  According to the point iterations, 

the implementation of these three iterative methods will be applied onto the node points of the same 

type • until the iterative convergence fixed is achieved [22]. Based on Fig. 1, the FS , HS and QS 

iterative methods will compute approximate values onto node points of type • only until the 

convergence criterion is reached. Then, other approximate solutions at remaining points (points of the 

different type) can be computed using the direct method [11, 19]. 

Figure 1 a) , b) and c) show distribution of uniform solid node points for the FS, HS and QS cases 

respectively. 

Based on Figure 1, the following discussion will be restricted to divide the solution domain [a, b] of 

problem (1) into subintervals in which the distance of the subinterval, x is defined in Eq. (2). 
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Based on Figure (1), clearly the distance of solid node points for quarter-sweep is h4  meanwhile the 

full-sweep and half-sweep h and h2  respectively as shown in Eq. (2). 

2. Formulations of Quarter-sweep Nonlocal Discretization Scheme

Before constructing the Quarter-sweep FD approximation equation of problem (1), let us consider 

several nonlocal quarter-sweep discretization schemes being given as follows [23]    

4
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By using the approach of second-order quarter-sweep FD discretization scheme, the corresponding 

approximation equations for problem (1) can be easily shown as 

    3,,12,8,4,0,,,2 384
2

44   niUUUfhUUU niiii    
(6) 

Where 
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Actually, Eq. (7) is called as the nonlinear term of problem (1). To solve the nonlinear system in Eq. 

(6), the nonlocal discretization scheme is used to transform the nonlinear system into the form of a 

system of linear equations. In this paper, however, we consider the nonlocal discretization scheme in 

Eq. (4) being imposed over the nonlinear approximation equation (6). Therefore, Eq. (7) can be 

rewritten as follows 
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3. Formulations of Quarter-sweep Successive Over Relaxation method

In this section, we present on how to derive the formulation of the QSSOR methods. Based on the 

approximation equation in Eqs. (6) and (8), the general scheme of the QSSOR method can be stated as 
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 (9) 

where ω and  
3,12,8,4, nU

k
i  represent as a relaxation factor and the k

th
 estimation for corresponding 

approximate solutions respectively. Actually the FSSOR iterative method in form of discussed Eq. (9) 

was by Young [7]. Practically, the optimal value of ω in range 21   will be obtained by 

implementing several computer programs and then the best approximate value of ω is chosen in which 

its number of iterations is the smallest. The general algorithm for the QSSOR iterative methods to 

solve the linear equations (9) would be generally described in Algorithm 1 [18] 

Algorithm 1 : QSSOR scheme 

i. Initialize   100

~
10,0  

i

U

ii. Assign the value of ω
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iv. Check the convergence test,     101 10  k
i

k
i UU . If yes, go to step (iv). Otherwise go back to 

step (iii).

v. Display approximate solutions.

4. Numerical Experiments

In order to validate the performance of the FSSOR, HSSOR and QSSOR iterative methods together 

with the nonlocal approach, three nonlinear example problems were tested. For the sake of 

comparison, three criteria will be considered for these three proposed iterative methods which are 

number of iterations, computation time (in seconds) and maximum absolute error.  

Example 1 [24] 

10for,0'2"  xUeUU
(10) 

subject to the boundary conditions 

0)1(0)0(  UU  

with exact solution were defined by 

.2log
2

exp
1

2
log)( 
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Example 2 [25] 

  10for,2

2

3"  xUxU
(12) 

subject to the boundary conditions 
    11,40  UU

with exact solution were defined by 

 
 

.
21

4

x
xU




(13) 

Example 3 [26] 

        10for,5.0'5.0" 





  xxUexUexU

x
xU

(14) 

subject to the boundary conditions 

    01],2log[0  UU

From above three examples, results of numerical experiments obtained have been summarized in 

Table 1. In the implementation approach, the convergence test considered the tolerance error
1010 . 

5. Numerical Experiments

In this paper, the performance of Quarter-sweep nonlocal discretization scheme with QSSOR method 

for the solution of nonlinear two-point boundary value problem associated with the second order finite 

difference approximation scheme has been investigated. Based on Table 1, numerical results showed 

that QSSOR method solved the proposed problems with least number of iterations as compared to the 

FSSOR and HSSOR methods. Meanwhile, in terms of computation time, QSSOR method computes 

with the fastest time for all considered mesh sizes. In the aspect of accuracy, numerical solutions 

obtained for test problems 1 to 3 are comparable for all the tested iterative methods. Finally, it can be 

concluded that the QSSOR method is superior to FSSOR and HSSOR methods. This is mainly 

because of the reduction of computational complexity in which the QSSOR method will only consider 

approximately quarter of all interior node points in a solution domain during iteration process.  
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