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Abstract. In this paper, we derive an implicit finite difference approximation equation of the
one-dimensional linear time fractional diffusion equations, based on the Caputo’s time
fractional derivative. Then this approximation equation leads the corresponding system of
linear equation, which is large scale and sparse. Due to the characteristics of the coefficient
matrix, we use the Accelerated Over-Relaxation (AOR) iterative method for solving the
generated linear system. One example of the problem is presented to illustrate the effectiveness
of AOR method. The numerical results of this study show that the proposed iterative method is
superior compared with the existing one weighted parameter iterative method.

1. Introduction

Fractional partial derivatives equations (FPDEs) have been used to govern many linear problems in
variety of applications field by using fractional calculus. Therefore, there are many successful
mathematical models, which are based on fractional partial derivative equations (FPDEs), have been
developed [1,2,3,4]. Supposing a fractional derivative replaces the first-order time partial derivative in
a diffusion model, in which this matter leads to slower diffusion [1]. In order to solve one dimensional
time fractional diffusion model with constant coefficient, analytical and/or numerical solutions are
available by using transform method which is one method used for numerical solution of the fractional
diffusion equations (FDE) [1,5,6], finite elements together with the methods of line [3], explicit and
implicit finite difference methods [7,8,9]. In fact, these finite difference schemes are available in the
literature [9,10]. As we know, the explicit methods are conditionally stable.

Due to the stability of finite difference discretization schemes, this paper deals with the application
of the implicit discretization scheme and Caputo’s fractional partial derivative of order ¢ being used
to discretize the time-fractional diffusion equation and derive a Caputo’s implicit finite difference
approximation equation. This implicit finite difference approximation equation will lead the
tridiagonal linear system in which the properties of the coefficient matrix of the linear system are
sparse and large scale. To solve any linear system, it can be observed that many iterative methods have
been proposed to solve any system of linear equations. For instance, further discussions of various
iterative methods have been discussed by Young [12, 13, 14], Hackbusch [15] and Saad [16]. In
addition to that, Evans [17] has also proposed block iterative methods via the Explicit Group (EG)
iterative methods in order to speed up the convergence rate. Again, it can be found that the concept of
block iteration has been expanded by other researchers (Ibrahim and Abdullah [23], Evans and Yousif
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[24, 25], Yousif and Evans [18]) to demonstrate the efficiency of its computation cost. Apart from
these iterative methods, Hadjidimos [20] has initiated the Accelerated Over-Relaxation (AOR) method
which is based on the point iterative method together with two weighted parameters. Actually this
iterative method is one of the efficient point iterative methods. To accelerate the convergence rate of
this iteration, Martins et a/ [26] have combined the concept of the EG iterative method together with
the AOR method in which this combination is called as the Explicit Group AOR (EGAOR) method for
solving elliptic partial differential equations. They pointed out that the 4 point-EGAOR method is
superior compared to the existing point AOR method.

Due to the advantages of the AOR method for solving partial differential equations, the main
objective of this paper is to construct and examine the effectiveness of the Accelerated Over-
Relaxation (AOR) iterative method for solving time fractional parabolic partial differential equations
(TPPDE’s) based on the Caputo’s implicit finite difference approximation equation. To examine the
effectiveness of the AOR method, we also implement the Successive Over-Relaxation (SOR) and
Gauss-Seidel (GS) iterative methods being used control methods.

To indicate the effectiveness of AOR method, let time fractional parabolic partial differential
equation (TPPDE’s be defined as

a 2
U))@)) 000 i) @
0” ox Ox
where a(x), b(x) and ¢(x) are known functions or constants, whereas o is a parameter which refers to
the fractional order of time derivative.

2. Preliminaries
Before constructing the finite difference approximation equation of Problem (1), we need to consider
the following definitions and properties of fractional derivative theory which are used in this paper.

Definition 1. [11] The Riemann-Liouville fractional integral operator , J“ of order- is defined as
1 7 «
T f) = [(c=t)" f()dt, @>0, x>0 @)
T(e)s

Definition 2.[11] The Caputo’s fractional partial derivative operator, D“ of order -« is defined as

s )
D“f(x):r(l | S0 4 wso 3)

m— O() ' (X _ t)afmﬂ

with m—1<a <m,meN, x>0

To find the numerical solution of Problem (1), we derive the Caputo’s implicit finite
difference approximations of Problem (1) with Dirichlet boundary conditions. To do this, we need to
consider the non-local fractional derivative operator. This approximation equation can be categories as
unconditionally stable scheme .Based on Problem (1), the solution domain of the problem has been
restricted to the finite space domain 0< x <y, with 0 < @ <1, whereas the parameter « refers to the
fractional order of time derivative. To solve Problem (1), let us assume the initial and boundary
conditions of Problem (1) be given as

U(O’t): go(t)’ U(ﬁ,t)= gl(t)’
and the initial condition

U(x0)=/(x)
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where g (t) gl(t), and f (x) are given functions. A discretize approximation to the time fractional

derivative in Eq. (1), we consider Caputo’s fractional partial derivative of order «, defined by
[11,13,14],

Ou(xp) 1 J'@u(x S)(t—s)_ads, t>0, 0<a<l 4)
ot” L(n-1)7 ot
The organization of the paper is as follows: In Section 2, the formula of the Caputo’s
fractional derivative operator and numerical procedure for solving time fractional diffusion equation
(1) by means of the implicit finite difference method are given. In Section 3, formulation of the AOR
iterative method is introduced. In Section 4 shows numerical example and its results and conclusion is
given in Section 5.

3. Approximation For Fractional Diffusion Equation

In this section, the first order approximation method for the computation of Caputo’s fractional partial
derivative is then stated as the following expression

a : (O‘)
DU =0k 2. @] (Ui,n—j+1_Ui,n—j) )
J=1
In which we define
1 (@) _ :l-a . l-a
= d N = - _1 .
T T MU

By using formula (5), we attempt to derive a discretize equation of Problem (1). Before
constructing the discretize equation, let the solution domain of the problem need to be partitioned
uniformly. For some positive integers m and n, the grids sizes in space and time directions for the
vy-0

m
the uniformly grid network of the solution domain, let the grid points in the space interval [0, 7/] be

finite difference algorithm are defined as A =Ax= and k=At :Z respectively. To construct
n

indicated as the numbers x; =ih, i=0,12,...,mand the grid points in the time interval [O,T ] are

labeled ¢ j= jk, j=01.2,...,n. The values of the function U (x,t) at the grid points are denoted as
U, =Ulx.t,).

Using Eq. (5) and the implicit finite difference discretization scheme, the Caputo’s discrete
equation of Problem (1) to the grid point centered at (xi Y ): (ih, nk) is given as

O ok ZH: w_g‘a) (Ui,n—jJrl -U,,.,; )
=

-U., )+ U, (6)

i+l,n

=a LZ(Ui—l,n - 2Ui,n +U., )+ b, i(U
h 2h
fori=1,2...m-1.

According to Eq. (6), the discrete equation is known as the fully implicit finite difference
approximation equation which is consistent first order accuracy in time and second order in space.
Again the approximation equation (6) can be rewritten based on the specified time level. Therefore,
we have for n>2 :

n

(Ol)( aj; bi 2al- a; bi

ok 20 WUin—js1 =Ujp- ')= — 7 \Vi-tnt| i —— Uin+| =+ 77 |Vit1,n. (72)
= / / 2h 2 p2  2h
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i+l,n?

SO0k ij('a)(Ui,n—jH - Ui,n—j ) =pU,_.,+qU,, +rU
=

where

=" :
h® 2h
Also, we get forn = 1,
~piUi1+4; Uit —riUpa1 = f;), i=12,.m~1 (7b)
where
(@) _
o =1,

*
qi = Ga,k - Q[ H
Jir=0akU;;-

Based on Eq. (7b), it can be seen that the tridiagonal linear system can be constructed in a matrix form
as

Au=f ®)
where
q* —r
-p q* —r
j— %k —r
A= poa- :
-p q* -r

L P 4 )(me)
= I
U=U11 Uy U3zt - Up—21 Up-11] >
=lv Uy Un U U U Ui [F
S=lWU0n+pWor Uz Uszp - Up_21 Upi1+Pm-1Umy

4. Formulation of Accelerated Over-Relaxation Iterative Method
Based on the tridiagonal linear system in Eq. (8), it is clear that the characteristics of its coefficient
matrix are large scale and sparse. As mentioned in Section 1, many researchers have discussed various
iterative methods such as Young [12,13,14], Hackbusch [15], Saad [16], Evans [17], Yousif and
Evans [18,19], and Othman and Abdullah [20]. To obtain numerical solutions of the tridiagonal linear
system which is generated by the Caputo’s implicit finite difference approximation equation, we
consider the Accelerated Over-Relaxation (AOR) iterative method [20, 21], which is the most known
and widely using for solving any linear systems. To formulate AOR method, let the coefficient matrix
A in (8) be expressed as summation of the three matrices

A=D-L-V 9)
where D, L and V are diagonal, lower triangular and upper triangular matrices respectively.
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Thus, AOR iterative method can be defined generally as [21, 22]
0% =(D-aL)' [V +(B-w)D+(1-B)DIY + p(D-wL)" f (10)

where U (k)represents an unknown vector at A" iteration. The implementation of the AOR iterative
method can be described in Algorithm 1.

Algorithm 1: AOR method
i. Initialize U« 0and . 19710
ii. For j=1.2,...,n Implement
a. Fori=12,...,m—1calculate

G =(D-oL)' [V +(B-o)D+(1- DT + B(D-wL)" f

b. Convergence test. If the convergence criterion i.c U (k+1)—(7 (k)”£s=10_10is

satisfied, go to Step (iii). Otherwise go back to Step (a).

iii  Display approximate solutions.

5. Numerical Example

In this section, we apply the approximation equation (7), in order in getting numerical solution of time
fractional diffusion equation. One example of the time fractional diffusion equation was tested for
verify the effectiveness of the Gauss-Seidel (GS), Successive Over-Relaxation (SOR) and Accelerated
Over-Relaxation (AOR) iterative methods. For comparison purpose in indicating the effectiveness of
these three proposed iterative methods, three criteria will be considered such as number of iterations,
execution time (in seconds) and maximum absolute error at three different values of a = 0.25, a = 0.50
and o = 0.75. For implementation of point iterations, the convergence test considered the tolerance

error, which is fixed as e=10""7.
Consider the time fractional initial boundary value problem be given as [22]

o°“U(x,1) _ 0°U(x,1)

, 0<a<l,0<x<Ly, t>0, 11
ot o ! (an
where the boundary conditions are stated in fractional terms
2kt* ) 2kt”
U(0,t)=———, U(t,t)=1" + ——, (12)
o +1) (o +1)

and the initial condition

U(x,0)=x2. (13)

From Problem (11), as taking « =1, it can be seen that Eq. (11) can be reduced to the standard
diffusion equation

U (x,1) B 82U(x, 1)
o a2
subjected to the initial condition
U (x,O) = x2 s
and boundary conditions
U(0,) = 2kt, U(l,t)= 0% +2kt,

Then the analytical solution of Problem (14) is obtained as follows

, 0<x<y, t>0, (14)
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Ul(x,t)=x* + 2kt.
Now by applying the series

0" U 0 2wl oty 0
)= 3 TR, 575127 Uix)
© op=l =0

n=0

tna+i

C(na +i+1)
to U (x,t) for 0<a < 1, it can be shown that the analytical solution of Problem (11) is given as

CC

F(a + 1)

Ulx,t)=x" +2k

All results of numerical experiments for Problem (11), obtained from implementation of GS,
SOR and AOR iterative methods are recorded in Table 1 at different values of mesh sizes, m = 128,
256, 512, 1024, and 2048.

TABLE 1. Comparison of number iterations, the execution time ( seconds) and maximum errors for
the iterative methods using example at o = 0.25, 0.50, 0.75

M Method a=0.25 a=0.50 a=0.75
K Time Max K Time Max K Time Max

Error Error Error

128 GS 21017 37.73  9.97e-5 13601 5.92 9.86e-5 6695 294  1.30e-4
SOR 465 1.54  9.95e-5 385 1.44 9.84¢-5 411 1.51 1.30e-4

AOR 431 0.33  9.95e-5 185 0.33 9.84e-5 411 0.69 1.29¢-4

256 GS 77231 343.63 1.00e-4 50095 42.17 9.90e-5 24732 20.70  1.30e-4
SOR 939 473  9.96e-5 769 3.99 9.84e-5 513 292  1.30e-4

AOR 870 1.25  9.95e-5 709 2.27 9.84e-5 513 148  1.29¢-4

512 GS 281598 2747.34 1.02e-4 183181 339.85 1.01e-4 90783 166.75  1.32e-4
SOR 1886 17.51 9.96e-5 1537 14.39 9.84e-5 1025 10.33  1.30e-4

AOR 1607 8.16  9.95e-5 1481 9.91 9.82e-5 1025 579  1.29e-4

1024  GS 1017140 68285.36 1.09¢-4 663971 2454.53 1.08e-5 330622 1209.39  1.40e-4
SOR 3805 68.91 9.96e-5 3073 55.68 9.84e-5 2049 37.33  1.30e-4

AOR 3100 28.30  9.95e-5 2918 14.39 9.84e-5 2049 1936 1.29¢-4

2048 GS 3631638 58914.30 1.38e-4 2380946 17795.25 1.38e-4 1192528 879426  1.71e-4
SOR 8193 430.17  9.96e-5 6145 239.84 9.84e-5 7849 303.50  1.30e-4

AOR 8139 144.51 9.95e-5 2819 27.23 9.83e-5 7849 13597  1.29¢-4

6. Conclusion

For the time fractional diffusion problems, the paper presents the formulation of the Caputo’s implicit
finite difference equations to generate a linear system. Then to solve the generated linear system, the
formulation and implementation of these three proposed iterative methods such as GS, SOR and AOR
have been presented based on the Caputo’s implicit finite difference approximation equation. From
observation of all experimental results by imposing the GS, SOR and AOR iterative methods, it is
obvious at a@=0.25 that that number of iterations declined approximately by 0.66-18.53%
corresponds to the AOR iterative method compared with the SOR method. Again in terms of
execution time, implementations of AOR method are much faster about 53.39-78.57% than the SOR
method. It means that the AOR method requires the least amount for number of iterations and
computational time at o =0.25 as compared with GS and SOR iterative methods. This is due to the
implementations of AOR iterative method have been accelerated by using the optimal value of the two
weighted parameters, @ and £ . In fact, these conclusions are inline with the results of Othman and
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Abdullah [19]. Based on the accuracy of there three iterative methods, it can be concluded that the
numerical solutions for AOR method are in good agreement.
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Fractional partial derivatives equations (FPDEs) have been used to govern many linear problems in variety of applications field by using fractional calculus. Therefore, there are many successful mathematical models, which are based on fractional partial derivative equations (FPDEs), have been developed [1,2,3,4]. Supposing a fractional derivative replaces the first-order time partial derivative in a diffusion model, in which this matter leads to slower diffusion [1]. In order to solve one dimensional time fractional diffusion model with constant coefficient, analytical and/or numerical solutions are available by using transform method which is one method used for numerical solution of the fractional diffusion equations (FDE) [1,5,6], finite elements together with the methods of line [3], explicit and implicit finite difference methods [7,8,9]. In fact, these finite difference schemes are available in the literature [9,10]. As we know, the explicit methods are conditionally stable. 
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To indicate the effectiveness of AOR method, let time fractional parabolic partial differential equation (TPPDE’s be defined as
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where a(x), b(x) and c(x) are known functions or constants, whereas α is a parameter which refers to the fractional order of time derivative.

2. Preliminaries


Before constructing the finite difference approximation equation of Problem (1), we need to consider the following definitions and properties of fractional derivative theory which are used in this paper.


Definition 1. [11] The Riemann-Liouville fractional integral operator , 
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Definition 2.[11] The Caputo’s fractional partial derivative operator, 
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To find the numerical solution of Problem (1), we derive the Caputo’s implicit finite difference approximations of Problem (1)  with Dirichlet boundary conditions. To do this, we need to consider the non-local fractional derivative operator. This approximation equation can be categories as unconditionally stable scheme .Based on Problem (1), the solution domain of the problem has been restricted to the finite space domain 
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 refers to the fractional order of time derivative. To solve Problem (1), let us assume the initial and boundary conditions of Problem (1) be given as 
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and the initial condition
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are given functions. A discretize approximation to the time fractional derivative in Eq. (1), we consider Caputo’s fractional partial derivative of order 
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The organization of the paper is as follows: In Section 2, the formula of the Caputo’s fractional derivative operator and numerical procedure for solving time fractional diffusion equation (1) by means of the implicit finite difference method are given. In Section 3, formulation of the AOR iterative method is introduced. In Section 4 shows numerical example and its results and conclusion is given in Section 5.


3. Approximation For Fractional Diffusion Equation

In this section, the first order approximation method for the computation of Caputo’s fractional partial derivative is then stated as the following expression
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In which we define 
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By using formula (5), we attempt to derive a discretize equation of Problem (1). Before constructing the discretize equation, let the solution domain of the problem need to be partitioned uniformly. For some positive integers m and n, the grids sizes in space and time directions for the finite difference algorithm are defined as  
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respectively. To construct the uniformly grid network of the solution domain, let the grid points in the space interval 
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and the grid points in the time interval 

[image: image33.wmf][


]


T


,


0


 are labeled 

[image: image34.wmf],


jk


t


j


=




 EMBED Equation.3  [image: image35.wmf]n


,...,


,


,


j


2


1


0


=


. The values of the function 

[image: image36.wmf](


)


t


x


U


,


 at the grid points are denoted as 

[image: image37.wmf](


)


j


i


j


i


t


x


U


U


,


,


=


. 


Using Eq. (5) and the implicit finite difference discretization scheme, the Caputo’s discrete equation of Problem (1) to the grid point centered at 

[image: image38.wmf](


)


(


)


nk


,


ih


t


,


x


j


i


=


 is given as





[image: image39.wmf]

[image: image40.wmf](


)


(


)


å


=


-


+


-


-


n


j


j


n


i


j


n


i


j


k


U


U


1


,


1


,


,


a


a


w


s


                                                                                                          
      

[image: image41.wmf](


)


(


)


,


2


1


2


1


,


,


1


,


1


,


1


,


,


1


2


1


n


i


i


n


i


n


i


i


n


i


n


i


n


i


U


c


U


U


h


b


U


U


U


h


a


+


-


+


+


-


=


-


+


+


-


                          (6)                                                                                                     

for i=1,2...,m-1.


According to Eq. (6), the discrete equation is known as the fully implicit finite difference approximation equation which is consistent first order accuracy in time and second order in space. Again the approximation equation (6) can be rewritten based on the specified time level. Therefore, we have for 
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where 
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Based on Eq. (7b), it can be seen that the tridiagonal linear system can be constructed in a matrix form as 
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where
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4. Formulation of Accelerated Over-Relaxation Iterative Method


Based on the tridiagonal linear system in Eq. (8), it is clear that the characteristics of its coefficient matrix are large scale and sparse. As mentioned in Section 1, many researchers have discussed various iterative methods such as Young [12,13,14],  Hackbusch [15], Saad [16], Evans [17], Yousif and Evans [18,19], and Othman and Abdullah [20]. To obtain numerical solutions of the tridiagonal linear system which is generated by the Caputo’s implicit finite difference approximation equation, we consider the Accelerated Over-Relaxation (AOR) iterative method [20, 21], which is the most known and widely using for solving any linear systems.  To formulate AOR method, let the coefficient matrix A in (8) be expressed as summation of the three matrices
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where D, L and V are diagonal, lower triangular and upper triangular matrices respectively. 


Thus, AOR iterative method can be defined generally as [21, 22]
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where 
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represents an unknown vector at kth iteration. The implementation of the AOR iterative method can be described in Algorithm 1.


		Algorithm 1: AOR method
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b. Convergence test. If the convergence criterion i.e
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is satisfied, go to Step (iii). Otherwise go back to Step (a).
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5. Numerical Example


In this section, we apply the approximation equation (7), in order in getting numerical solution of time fractional diffusion equation. One example of the time fractional diffusion equation was tested for verify the effectiveness of the Gauss-Seidel (GS), Successive Over-Relaxation (SOR) and Accelerated Over-Relaxation (AOR) iterative methods. For comparison purpose in indicating the effectiveness of these three proposed iterative methods, three criteria will be considered such as number of iterations, execution time (in seconds) and maximum absolute error at three different values of α = 0.25, α = 0.50 and α = 0.75. For implementation of point iterations, the convergence test considered the tolerance error, which is fixed as 
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Consider the time fractional initial boundary value problem be given as [22]
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where the boundary conditions are stated in fractional terms
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and the initial condition
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From Problem (11), as taking 
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, it can be seen that Eq. (11) can be reduced to the standard diffusion equation 
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subjected to  the initial condition
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and boundary conditions
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Then the analytical solution of Problem (14) is obtained as follows 
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Now by applying the series 
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 it can be shown that the analytical solution of Problem (11) is given as
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All results of numerical experiments for Problem (11), obtained from implementation of GS, SOR and AOR iterative methods are recorded in Table 1 at different values of mesh sizes, m = 128, 256, 512, 1024, and 2048.


TABLE 1. Comparison of number iterations, the execution time ( seconds) and maximum errors for the iterative methods using example at 

[image: image81.wmf]75


.


0


,


50


.


0


,


25


.


0


=


a




		M

		Method

		α = 0.25

		α = 0.50

		α = 0.75



		

		

		K

		Time

		Max


Error

		K

		Time

		Max


Error

		K

		Time

		Max


Error



		128




		GS

		21017

		37.73

		9.97e-5

		13601

		5.92

		9.86e-5

		6695

		2.94

		1.30e-4



		

		SOR

		465

		1.54

		9.95e-5

		385

		1.44

		9.84e-5

		411

		1.51

		1.30e-4



		

		AOR

		431

		0.33

		9.95e-5

		185

		0.33

		9.84e-5

		411

		0.69

		1.29e-4



		256




		GS

		77231

		343.63

		1.00e-4

		50095

		42.17

		9.90e-5

		24732

		20.70

		1.30e-4



		

		SOR

		939

		4.73

		9.96e-5

		769

		3.99

		9.84e-5

		513

		2.92

		1.30e-4



		

		AOR

		870

		1.25

		9.95e-5

		709

		2.27

		9.84e-5

		513

		1.48

		1.29e-4



		512

		GS

		281598

		2747.34

		1.02e-4

		183181

		339.85

		1.01e-4

		90783

		166.75

		1.32e-4



		

		SOR

		1886

		17.51

		9.96e-5

		1537

		14.39

		9.84e-5

		1025

		10.33

		1.30e-4



		

		AOR

		1607

		8.16

		9.95e-5

		1481

		9.91

		9.82e-5

		1025

		5.79

		1.29e-4



		1024

		GS

		1017140

		68285.36

		1.09e-4

		663971

		2454.53

		1.08e-5

		330622

		1209.39

		1.40e-4



		

		SOR

		3805

		68.91

		9.96e-5

		3073

		55.68

		9.84e-5

		2049

		37.33

		1.30e-4



		

		AOR

		3100

		28.30

		9.95e-5

		2918

		14.39

		9.84e-5

		2049

		19.36

		1.29e-4



		2048

		GS

		3631638

		58914.30

		1.38e-4

		2380946

		17795.25

		1.38e-4

		1192528

		8794.26

		1.71e-4



		

		SOR

		8193

		430.17

		9.96e-5

		6145

		239.84

		9.84e-5

		7849

		303.50

		1.30e-4



		

		AOR

		8139

		144.51

		9.95e-5

		2819

		27.23

		9.83e-5

		7849

		135.97

		1.29e-4





6. Conclusion 


For the time fractional diffusion problems, the paper presents the formulation of the Caputo’s implicit finite difference equations to generate a linear system. Then to solve the generated linear system, the formulation and implementation of these three proposed iterative methods such as GS, SOR and AOR  have been presented based on the Caputo’s implicit finite difference approximation equation. From observation of all experimental results by imposing the GS, SOR and AOR iterative methods, it is obvious at 
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  that that number of iterations declined approximately by 0.66-18.53% corresponds to the AOR iterative method compared with the SOR method. Again in terms of execution time, implementations of AOR method are much faster about 53.39-78.57% than the SOR method. It means that the AOR method requires the least amount for number of iterations and computational time at 
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 as compared with GS and SOR iterative methods. This is due to the implementations of AOR iterative method have been accelerated by using the optimal value of the two weighted parameters, ω and
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. In fact, these conclusions are inline with the results of Othman and Abdullah [19]. Based on the accuracy of there three iterative methods, it can be concluded that the numerical solutions for AOR method are in good agreement. 


References


[1] Mainardi, F. 1997. Fractals and Fractional Calculus Continuum Mechanics. Heidelberg: Springer-Verlag, 291-348.


[2] Diethelm, K. and Freed, A.D. 1999. On the solution of nonlinear fractional order differential equation used in the modeling of viscoelasticity, in Scientific Computing in Chemical engineering II Computational Fluid Dynamic, Reaction Engineering and Molecular Properties, Heidelberg: Springer-Verlag, 217-224.


[3]  Liu, F, Anh,V, and Turner, I. 2004. Numerical solution of the space fractional Fokker-Planck equation, JCAM, 166:  209-219.


[4] Meerschaert, M.M.  and Tadjeran, C.. 2004. Finite difference approximation for fractional advection-dispersion flow equations, JCAM, 172:145-155.

[5] Chaves, A. 1998. Fractional diffusion equation to describe Levy flight, Phys.Lett, A 239:13-16. 

[6] Agrawal, O.P. 2002. Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamic, 29:145-155


[7] Liu, F,  Zhuang, P, Anh, V, and Turner, I.. 2006. A fractional-order implicit difference approximation for the space-time fractional diffusion equation, ANZIAM J, 47:C871-C887.

[8] Shen, S.  and Liu, F. 2005. Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends, ANZIAM J.46 (E):C871-C887


[9] Yuste, S.B.  and Acedo, L. 2005. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal.42 (5):1862-1874


[10] Yuste, S.B. 2006. Weighted average finite difference method for fractional diffusion equations, J.Comp.Phys.216:264-274


[11] Zhang, Y. 2009. A Finite Difference Method For Fractional Partial Differential Equation, Applied Mathematics And Computation 215:524-529.


[12] Young, D.M. 1954. Iterative Methods for solving Partial Difference Equations of Elliptic Type, Trans. Amer. Math. Soc.,76:92-111.


[13] Young, D.M. 1971. Iterative solution of large linear systems. London: Academic Press.


[14] Young, D.M. 1972. Second-degree iterative methods for the solution of large linear systems. Journal of Approximation Theory. 5:37-148.


[15] Hackbusch, W. 1995. Iterative solution of large sparse systems of equations. New York: Springer-Verlag.


[16] Saad, Y. 1996. Iterative method for sparse linear systems. Boston: International Thomas Publishing.


[17] Evans, D.J. 1985. Group Explicit Iterative methods for solving large linear systems, Int. J. Computer Maths.,  17:81-108.


[18] Yousif, W.S.  and Evans, D. J. 1995. Explicit de-coupled group iterative methods and their implementations. Parallel Algorithms and Applications. 7:53-71.


[19] Othman, M, and Abdullah, A.R. 2000.  An Efficient Four Points Modified Explicit Group   Poisson Solver. International Journal Computer Mathematics. 76:203-217.


[20] Hadjidimos, A. 1978. Accelerated OverRelaxation Method.  Mathematics of Computation., 32, 149-157.


[21] Hallett, A.J.H. 1986. The Convergence Of Accelerated OverRelaxation Iterations, Mathematics of Computation. 47 (125): 219:223.

[22] Jun, J.Y, and Tang, M.J. 2013.  Moving Finite Element Methods For Time Fractional Partial Differential equations, Science China Mathematics. 56 (6): 1287-1300.  

[23] Ibrahim, A. and Abdullah, A.R. 1995. Solving the two dimensional diffusion equation by the Four Point Explicit Decoupled Group (EDG) iterative method. International Journal Computer Mathematics. 58:253-256.

[24] Evans, D.J and Yousif, W. S.  1986. Explicit Group Iterative Methods for solving elliptic partial differential equations in 3-space dimensions. Int. J. Computer Maths.,  18:323-340.

[25] Evans, D. J and Yousif, W. S. 1990. The Explicit Block Relaxation method as a grid smoother in the Multigrid V-cycle scheme. Int. J. Computer Maths.,  34:71-78.

[26] Martins, M.M.,  Yousif, W. S., and Evans, D. J. 2002. Explicit Group AOR method for solving elliptic partial differential equations. Neura Parallel, and Science Computation. 10 (4): 411-422.

_1446362480.unknown



_1448214014.unknown



_1448216037.unknown



_1448351489.unknown



_1448351552.unknown



_1448362959.unknown



_1448363114.unknown



_1448352091.unknown



_1448351525.unknown



_1448216181.unknown



_1448216275.unknown



_1448351345.unknown



_1448216293.unknown



_1448216201.unknown



_1448216140.unknown



_1448216154.unknown



_1448216083.unknown



_1448215775.unknown



_1448215989.unknown



_1448216005.unknown



_1448215933.unknown



_1448215670.unknown



_1448215740.unknown



_1448215163.unknown



_1448213004.unknown



_1448213303.unknown



_1448213428.unknown



_1448213767.unknown



_1448213364.unknown



_1448213383.unknown



_1448213346.unknown



_1448213137.unknown



_1448213265.unknown



_1448213085.unknown



_1446363278.unknown



_1447255153.unknown



_1448212917.unknown



_1448212939.unknown



_1448212381.unknown



_1447255203.unknown



_1446363417.unknown



_1446366216.unknown



_1447161532.unknown



_1447161616.unknown



_1446367436.unknown



_1446366009.unknown



_1446363351.unknown



_1446362623.unknown



_1446363241.unknown



_1446362580.unknown



_1445890775.unknown



_1445971837.unknown



_1446332307.unknown



_1446361867.unknown



_1446332362.unknown



_1446272348.unknown



_1446328069.unknown



_1446328086.unknown



_1446327941.unknown



_1445972920.unknown



_1445971715.unknown



_1445971774.unknown



_1445926881.unknown



_1445967248.unknown



_1445926581.unknown



_1445887486.unknown



_1445887727.unknown



_1445888032.unknown



_1445887692.unknown



_1445875882.unknown



_1445887147.unknown



_1445887325.unknown



_1445887370.unknown



_1445887106.unknown



_1444501169.unknown



_1444501177.unknown



_1391584829.unknown



_1444501168.unknown



_1364728266.unknown





