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Abstract. We deal with the application of an unconditionally implicit finite difference 

approximation equation of the one-dimensional linear time fractional diffusion equations 

(TFDE’s) via the Caputo’s time fractional derivative. Based on this implicit approximation 

equation, the corresponding linear system can be generated in which its coefficient matrix is 

large scale and sparse. To speed up the convergence rate in solving the linear system 

iteratively, we construct the corresponding preconditioned linear system. Then we formulate 

and implement the Preconditioned AOR (PAOR) iterative method for solving the generated 

linear system. One example of the problem is presented to illustrate the effectiveness of PAOR 

method. The numerical results of this study show that the proposed iterative method is superior 

to PSOR and PGS, GS iterative method. 

1.  Introduction 
 Based on previous studies in [1,2,3,4] many successful mathematical models, which are based on 
fractional partial derivative equations, have been developed. Following to that, there are several 
methods used to solve these models. For example, researchers have proposed finite difference methods 
such as explicit and implicit [5,6,7]. Also it is pointed out that the explicit methods are conditionally 
stable. Therefore, we discretize the time-fractional diffusion equation (TFDE’s) via the implicit finite 
difference discretization scheme and Caputo’s fractional partial derivative of order   in order to 
derive a Caputo’s implicit finite difference approximation equation. This approximation equation leads 
a tridiagonal linear system. Due to the properties of the coefficient matrix of the linear system which is 
sparse and large scale, iterative methods are the alternative option for efficient solutions. As far as  
iterative methods are concerned,  it can be observed that many researchers such as Young [8], 
Hackbusch [9] and Saad [10] have proposed and discussed several families of iterative methods. 
Among the existing iterative methods, the preconditioned iterative methods Hoang-hao [11], 
Gunawardena [12] have been widely accepted to be one of the efficient methods for solving  linear 
systems.  

Because of the advantages of these iterative methods, the aim of this paper is to construct and 
investigate the effectiveness of the Preconditioned AOR (PAOR) iterative method for solving time 
fractional diffusion equations (TFDE’s) based on the Caputo’s implicit finite difference approximation 
equation. To investigate the effectiveness of the PAOR method, we also implement the PSOR and 
PGS,GS iterative methods being used a control method. 

To show the effectiveness of PAOR method, let time fractional diffusion equations (TFDe’s) be 
defined as 
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where a(x), b(x) and c(x) are known functions or constants, whereas α is a parameter which refers to 

the fractional order of time derivative. 

 

 
2. Preliminaries 

In this section, the space-fractional diffusion equation (1) is solved. In order to find solution in Eq.(1), 

let us define ,
1


m

h
l

where, m=n+1 is positive even integer.  By implementing definition (2) we 

obtain  

To constructing the Caputo’s implicit finite difference approximation equation of Eq.(1), the following 

are some basic definitions for fractional derivative theory which are used in this paper.  

Definition 1.[8] The Riemann-Liouville fractional integral operator, 
J of order-  is defined as 
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Definition 2.[8] The Caputo’s fractional partial derivative operator, 
D  of order -  is defined as 

 
   

  


x

m

m

dt
tx

tf

m
xfD

0

1
,

1
)(





0       (3) 

with ,1 mm   mN, 0x  

To obtain the numerical solution of Eq.(1) with Dirichlet boundary conditions, firstly we derive an 

implicit finite difference approximation equation based on the Caputo’s derivative definition and the 

non-local fractional derivative operator. This implicit approximation equation can be categoried as 

unconditionally stable scheme. A discretize approximation to the time fractional derivative in Eq. (1) 

by using Caputo’s fractional partial derivative of order  , is defined as[10,11] 
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3. Approximation For Fractional Diffusion Equation 
In this paper, FSAOR, HSAOR and QSAOR iterative methods will be applied to solve linear system 
generated from the discretization of the problem in Eq.(1) as shown in Eq.(10). To derive the 
formulation of both proposed methods, let the coefficient matrix A in Eq.(10) be expressed as 

From Eq. (4), the formulation of Caputo’s fractional partial derivative of the first order approximation 

method is given as  
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and we have the following expressions  
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Before discretizing Eq.(1), let the solution domain of the problem be partitioned uniformly. To do this, 

we consider some positive integers m and n in which the grid sizes in space and time directions for the 

finite difference algorithm are defined as  
m

xh
0

  and 
n

T
tk  respectively. Based on these 

grid sizes, we construct the uniformly grid network of the solution domain where the grid points in the 

space interval  ,0  are indicated as the numbers ,ihx i  m,...,,,i 210 and the grid points in the time 

interval  T,0  are labeled 
,jkt j  n,...,,,j 210 . Then the values of the function  txU ,  at the grid 

points are denoted as  
jiji txUU ,,  .  
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By using Eq. (5) and the implicit finite difference discretization scheme, the Caputo’s implicit finite 

difference approximation equation of Problem (1) to the grid point centered at    nk,iht,x ji   is 

given as 
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   (6)                                                                                                 

for i=1,2...,m-1. 

Based on Eq. (6), this approximation equation is known as the fully implicit finite difference 

approximation equation which is consistent first order accuracy in time and second order in space. 

Basically,  the approximation equation (6) can be rewritten based on the specified time level. For 

instance, we have for 2n  : 
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Also, we get for n = 1, 
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From, Eq. (7b), it can be seen that the tridiagonal linear system can be constructed in matrix form as  
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4.   Preconditioned Aor Iterative Method  
In relation to the tridiagonal linear system in Eq. (8), it is clear that the characteristics of its coefficient 
matrix are large scale and sparse. As mentioned in Section 1, many researchers have discussed various 
iterative methods such as Young [8], Hackbusch [9], Saad [10], Sunarto et.al [13]. To obtain 
numerical solutions of the tridiagonal linear system (8), we consider the Preconditioned AOR (PAOR) 
iterative method [11, 14], which is the most known and widely using for solving any linear systems. 

Before applying the PAOR iterative method, we need to transform the original linear system (8) into 
the preconditioned linear system 

~
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Actually, the matrix P is called a preconditioned matrix and defined as [12] 
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and the matrix I is an identical matrix. To formulate PAOR method, let the coefficient matrix *A  in 

(8) be expressed as summation of the three matrices 

VLDA*           (10) 

where D, L and V are diagonal, lower triangular and upper triangular matrices respectively. By using 

Eq. (9) and (10) , the formulation of PAOR iterative method can be defined generally as [11,14] 
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where  1k

~
x represents an unknown vector at (k+1)th iteration. The implementation of the PAOR 

iterative method can be described in Algorithm 1. 
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Iii Display approximate solutions. 

 
 

5.   Numerical Experiment 
With approximation Eq.(7), we consider one example of the time fractional diffusion equation to test 
the effectiveness of the  Gauss-Seidel (GS), Preconditioned Gauss-Seidel (PGS), Preconditioned SOR 
(PSOR) and PAOR iterative methods. In order to compare the effectiveness of these two proposed 
iterative methods, three criteria have been considered such as number of iterations, execution time (in 
seconds) and maximum absolute error at three different values of α = 0.25, α = 0.50 and α = 0.75. For 
implementation of both iterative schemes, the convergence test considered the tolerance error, which 
is fixed as  =

1010 
.   

Let us consider the time fractional initial boundary value problem be given as [15] 
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where the boundary conditions are stated in fractional terms 
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and the initial condition 
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   2
0 x,xU                              (14) 

All results of numerical experiments for Problem (12), obtained from implementation of GS, PGS, 

PSOR and PAOR iterative methods are recorded in Table 1 at different values of mesh sizes, m = 128, 

256, 512, 1024, and 2048. 
 

6.   Conclusions 

For the numerical solution of the time fractional diffusion problems, the paper presents the derivation 

of the Caputo’s implicit finite difference approximation equations in which this approximation 

equation leads a linear system. From observation of all experimental results by imposing the 

PGS,PSOR and PAOR iterative methods, it is obvious at 250 . that number of iterations  have 

declined approximately by 64.87-99.79% corresponds to the PAOR iterative method compared with 

the GS method. Again in terms of execution time, implementations of PAOR method are much faster 

about 4.95-98.97% than the PSOR and PGS method. It means that the PAOR method requires the least 

amount for number of iterations and computational time at 250.  as compared with PSOR and 

PGS iterative methods. Based on the accuracy of both iterative methods, it can be concluded that their 

numerical solutions are in good agreement.  
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Table 1. Comparison of number iterations (K), the execution time ( seconds) and maximum errors for 

the iterative methods using example at 75.0,50.0,25.0  

 

M 

 

Method 

α = 0.25 α = 0.50 α = 0.75 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 

 

GS 21017 37.73 9.9e-5 13601 5.92 9.8e-5 6695 2.94 1.3e-4 

PGS 7292 35.86 9.9e-5 4715 2.23 9.8e-5 2319 1.93 1.3e-4 

 PSOR 281 2.24 9.9e-5 229 1.95 9.8e-5 164 1.63 1.3e-4 

 PAOR 280 1.12 9.9e-5 225 1.50 9.8e-5 160 1.59 1.3e-4 

256 

 

GS 77231 343.63 1.0e-4 50095 42.17 9.9e-5 24732 20.70 1.3e-4 

PGS 26884 261.56 9.9e-5 17417 16.68 9.8e-5 8585 12.37 1.3e-4 

 PSOR 1428 16.90 9.9e-5 1171 12.61 9.8e-5 814 8.90 1.3e-4 

 PAOR 1100 12.44 9.9e-5 950 10.75 9.8e-5 713 8.13 1.3e-4 

512 GS 281598 2747.34 1.2e-4 183181 339.85 1.0e-4 90783 166.75 1.3e-4 

PGS 98422 1916.28 1.0e-4 63298 123.01 9.9e-5 31619 62.78 1.3e-4 

 PSOR 5524 113.86 9.9e-5 4520 91.37 9.8e-5 11695 61.98 1.3e-4 

 PAOR 4397 92.58 9.9e-5 3754 78.34 9.8e-5 2780 59.09 1.3e-4 

1024 GS 1017140 68285.36 1.0e-4 663971 2454.53 1.0e-5 330622 1209.39 1.4e-4 

PGS 357258 14064.44 1.4e-4 232784 1007.47 1.0e-5 115617 820.93 1.3e-4 

 PSOR 20574 817.59 9.9e-5 16842 662.23 9.8e-5 11695 456.23 1.3e-4 

 PAOR 16487 699.81 9.9e-5 14058 607.00 9.8e-5 10394 429.58 1.3e-4 

2048 GS 3631638 58914.30 1.3e-4 2380946 17795.25 1.3e-4 1192528 8794.26 1.7e-4 

PGS 121156 4104.17 1.3e-4 19153.0 3239.84 13e-5 112899 1305.5 1.3e-4 

 PSOR 75580 3043.59 1.3e-4 61941 2894.7 9.9e-5 43070 337.1 1.3e-4 

 PAOR 56289 3002.21 1.3e-4 46535 2870.12 9.9e-5 33819 305.2 1.3e-4 

 

 


