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Abstract
This paper will solve one of the fractional mathematical physics models, a
one-dimensional time-fractional differential equation, by utilizing the second-order
quarter-sweep finite-difference scheme and the preconditioned accelerated
over-relaxation method. The proposed numerical method offers an efficient solution
to the time-fractional differential equation by applying the computational complexity
reduction approach by the quarter-sweep technique. The finite-difference
approximation equation will be formulated based on the Caputo’s time-fractional
derivative and quarter-sweep central difference in space. The developed
approximation equation generates a linear system on a large scale and has sparse
coefficients. With the quarter-sweep technique and the preconditioned iterative
method, computing the time-fractional differential equation solutions can be more
efficient in terms of the number of iterations and computation time. The
quarter-sweep computes a quarter of the total mesh points using the preconditioned
iterative method while maintaining the solutions’ accuracy. A numerical example will
demonstrate the efficiency of the proposed quarter-sweep preconditioned
accelerated over-relaxation method against the half-sweep preconditioned
accelerated over-relaxation, and the full-sweep preconditioned accelerated
over-relaxation methods. The numerical finding showed that the quarter-sweep finite
difference scheme and preconditioned accelerated over-relaxation method can serve
as an efficient numerical method to solve fractional differential equations.

Keywords: Caputo’s fractional derivative; Implicit finite-difference scheme; QSPAOR;
TFDE

1 Introduction
The growing interest in the theory and applications of fractional calculus has become the
motivation for many researchers in recent years. Fractional calculus has attracted atten-
tion of experts from all over the world. Various fractional operators have been introduced
in the literature such as [3, 9–11, 27, 30, 31], and this encourages more extensive researches
to be conducted. Solving fractional differential equations (FDEs) using numerical meth-
ods has been seen as an ongoing research trend. The analytical solutions of most FDEs are
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challenging compared to the ordinary (ODEs) and partial differential equations (PDEs) in
general. Therefore, numerical solutions are actively being found by proposing new numer-
ical approximation techniques to solve the FDEs. Some notable numerical methods have
been developed to solve the fractional partial derivatives problems [1, 2, 14, 19, 20, 29].

Besides that, [12] has presented several interesting MATLAB routines for solving FDEs.
The author has provided many solution techniques for solving three identified FDE prob-
lems such as the standard FDEs, the multiorder systems of FDEs, and the multiterm FDEs.
One of the studies [13] presented several computational cost evaluations for the numer-
ical solutions of FDEs from the point of view of computer science. Based on that work,
the computational complexities for the time-fractional, space-fractional, and space–time
FDEs are known to be O(N2M), O(NM2), and O(NM(M + N)). The authors have also com-
pared the three mentioned computational costs against O(MN), which is the cost of find-
ing solutions for the classical partial differential equations using finite-difference meth-
ods. Here, M and N denote the number of spatial grid points and time steps, respectively.
Moreover, the authors have mentioned that the preconditioner technique is a good alter-
native to accelerate the computational process in solving FDEs.

In our development of the numerical method to solve FDEs, we are interested in ap-
plying the second-order quarter-sweep finite-difference scheme with a preconditioning
technique to solve the time-fractional FDE (TFDE). There are several finite difference
scheme applications to solve the TFDE [5, 7, 12, 25, 26]. However, the investigation on the
efficiency of the numerical method used to solve the TFDE is quite limited. The quarter-
sweep finite-difference scheme has been a good computation complexity reduction ap-
proach, especially when a large number of mesh points are considered [4, 22, 28]. The
quarter-sweep is able to reduce the computational complexity of computing the solutions
of a large linear system by computing a quarter of the total number of mesh points with-
out offsetting the solutions’ accuracy. Therefore, this paper investigates the efficiency of
the quarter-sweep finite difference scheme with a preconditioning technique called PAOR
[26] to solve the TFDE. The PAOR iterative method will be used to compute a quarter of
mesh points after quarter-sweep implementation. The remaining mesh points will be es-
timated by averaging. This efficient numerical method is important to the physicists to aid
their investigation on the time-fractional mathematical model, arising from the necessity
to sharpen the concepts of equilibrium, stability states, and time evolution in the long time
limit [8, 17, 18].

Throughout this paper, we discretized TFDE using the unconditionally stable second-
order quarter-sweep implicit finite-difference (QSIFD) scheme. We used Caputo’s frac-
tional partial derivative to form the approximation equation. Usually, the finite-difference
approximation equation’s implementation leads to a tridiagonal matrix of the linear sys-
tem due to its characteristics. The discretized finite-difference approximations also form
a large and sparse matrix which is the best alternative to be solved using the iterative
method. We have observed the successful iterative methods from many researchers. From
many discussions and extensions made in several categories of iterative methods, we find
that the preconditioned iterative methods have the unique properties to solve a linear sys-
tem efficiently [15, 16, 23].

This paper’s main contribution is to present the efficiency of our proposed numer-
ical method, which can be called the quarter-sweep preconditioned accelerated over-
relaxation (QSPAOR) iterative method for solving TFDEs. In this paper, the numerical
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method’s efficiency is evaluated based on the number of iterations and the computation
time. The QSPAOR iterative method’s efficiency will be compared against the half-sweep
preconditioned accelerated over-relaxation (HSPAOR) and full-sweep preconditioned ac-
celerated over-relaxation (FSPAOR), and the improvement in terms of the reduction of
both the number of iterations and computation time will be illustrated. The stability anal-
ysis of the quarter-sweep finite difference approximation equation and the AOR iterative
method’s convergence analysis are also provided.

The general TFDE that we consider as the main problem to be solved can be written as

∂αU(x, t)
∂αt

= p(x)
∂2U(x, t)

∂x2 + q(x)
∂U(x, t)

∂x
+ r(x)U(x, t), (1)

where p(x), q(x), and r(x) are known functions or coefficients; meanwhile, α is a parameter
that determines the degree of fractional order for the time derivative. For the formulation
of the finite-difference approximation with Caputo’s derivative, here are the important
definitions that we use:

Definition 1 The Riemann–Liouville fractional integral operator, Jα , of order-α is defined
as

Jαf (x) =
1

�(α)

∫ x

0
(x – t)αf (t) dt, α > 0, x > 0. (2)

Definition 2 The Caputo’s fractional partial derivative operator, Dα , of order-α is defined
as

Dαf (x) =
1

�(m – α)

∫ x

0

f (m)(t)
(x – t)α–m+1 dt, α > 0, (3)

with m – 1 < α ≤ m, m ∈ N and x > 0.

2 Research methodology
To solve the fractional differential problem shown in Eq. (1), we assume that the solutions
exist and satisfy the Dirichlet boundary conditions. Therefore, using Eq. (2), the time-
fractional derivative term in Eq. (1) is discretized using

∂αu(x, t)
∂tα

=
1

�(n – 1)

∫ ∞

0

∂u(x – s)
∂t

(t – s)–α ds, t > 0, 0 < α < 1. (4)

Using the approximation equation to Eq. (1) employing the finite-difference method and
Caputo’s fractional derivative, we develop a C++ code for the simulation of the approxi-
mate solutions. We have two examples of the TFDE to examine the iterative methods, i.e.,
the proposed QSPAOR, HSPAOR, and FSPAOR. The proposed numerical method’s effi-
ciency is examined using the number of iterations (K ) and the computation time measured
in seconds. The maximum absolute error (MAE) is also observed for accuracy checking.
These criteria are compared by using three different order parameters α, i.e., α = 0.25,
α = 0.50, and α = 0.75. The convergence tolerance, ε = 10–10, is set to terminate the itera-
tion process.
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3 Approximation to the time fractional differential equation
The first-order approximation to the Caputo’s fractional derivative, which is derived from
the discrete approximation to the time-fractional derivative term shown in Eq. (4), can be
written as

Dα
t Ui,n ∼= σα,k

n∑
j=1

ω
(α)
j (Ui,n–j+1 – Ui,n–j), (5)

where, from Eq. (5), we define two representations for the sake of simplicity as follows:

σα,k =
1

�(1 – α)(1 – α)kα
,

and

ω
(α)
j = j1–α – (j – 1)1–α .

Then, we use the common discretization by partitioning the solution domain of Eq. (1)
uniformly, subjected by the Dirichlet boundary conditions. The numbers m and n (m, n �
ℵ+) are defined so that the grid framework in space and time is fixed everywhere and has
increments denoted as h = �x = γ –0

m and k = �t = T
n , respectively. Based on the developed

uniform grid network, the grid points in the space interval [0,γ ] are represented by xi = ih,
for i = 0, 1, 2, . . . , m, meanwhile the grid points in the time interval [0, T] are labeled as
tj = jk for j = 0, 1, 2, . . . , n. Therefore, the values of the function U(x, t) at the grid points
are expressed as Ui,j = U(xi, tj).

The implementation of QSIFD discretization scheme for Eq. (5) produced the Caputo’s
approximation to Eq. (1) at the grid point (xi, tj) = (ih, jk) which can be formulated as

σα,k

n–4∑
j=4

ω
(α)
j (Ui,n–j+1 – Ui,n–j)

=
pi

16h2 (Ui–4,n – 2Ui,n + Ui+4,n) +
qi

8h
(Ui+4,n – Ui–4,n) + riUi,n, (6)

for i = 4, 8, . . . , m – 4.
When the approximation in Eq. (6) is applied on the specified time level n ≥ 2, Eq. (6)

can be expressed as

σα,k

n∑
j=4

ω
(α)
j (Ui,n–j+1 – Ui,n–j) = p′

iUi–4,n + q′
iUi,n + r′

iUi+4,n, (7)

and the coefficients are represented by

p′
i =

pi

16h2 –
qi

8h
, q′

i = ri –
pi

8h2 , r′
i =

pi

16h2 +
qi

8h
.

In addition to this, for n = 1, we have

–p′
iUi–4,1 + q∗

i Ui,1 – r′
iUi+4,1 = fi,1, i = 4, 6, . . . , m – 4, (8)

where ω
(α)
j = 1, q∗

i = σα,k – q′
i, and fi,1 = σα,kUi,1.
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When a certain number of grid points is considered based on Eq. (8), a system of linear
equations is obtained, which can be expressed in the form matrix as follows:

A ˜U =
˜
f , (9)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q∗
4 –r′

4

–p′
8 q∗

8 –r′
8

–p′
12 q∗

12 –r′
12

. . . . . . . . .
–p′

m–8 q∗
m–8 –r′

m–8

–p′
m–4 q∗

m–4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(( m
4 )–1)x(( m

4 )–1)

,

˜U =
[
U4,1 U8,1 U12,1 · · · Um–8,1 Um–4,1

]T
,

and

˜
f =

[
U4,1 + p′

1U01 U8,1 U12,1 · · · Um–8,1 Um–4,1 + p′
m–4Um,1

]T
.

4 Analysis of stability
In this section, the stability analysis on the formulated Caputo’s finite-difference approxi-
mation in Eq. (6) is considered based on von Neumann’s approach and the Lax equivalence
theorem [21, 24, 33].

Theorem 4.1 The fully IFD approximation to the solution of Eq. (1) with 0 < α < 1 on the
finite domain 0 ≤ x ≤ 1, with zero boundary condition U(0, t) = U(
, t) = 0 for all t ≥ 0, is
consistent and unconditionally stable.

Proof Writing the solution of Eq. (1) in the form Un
j = ξneiωjh, i =

√
–1, ω is real, Eq. (1)

becomes

σα,kξn–1eiωjh – σα,k

n∑
j=2

ω
(α)
j

(
ξn–j+1eiωjh – ξn–jeiωjh)

= –piξneiω(j–4)h + (σα,k – qi)ξneiωjh – riξneiω(j+4)h. (10)

By simplifying and reordering Eq. (10), we get

σα,kξn–1 – σα,k

n∑
j=2

ω
(α)
j (ξn–j+1 – ξn–j) = ξn

((
(–pi – ri) cos(ωh)

)
+ (σα,k – qi)

)
. (11)

Eventually, from Eq. (11), we reduce to

ξn =
ξn–1 +

∑n
j=2 ω

(α)
j (ξn–j – ξn–j+1)

(1 + (pi+ri)
σα,k

cos(ωh) + qi
σα,k

)
. (12)
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Hence, from Eq. (12), it can be observed that

(
1 +

(–pi – ri)
σα,k

cos(ωh) –
qi

σα,k

)
≥ 1, (13)

for all α, n, ω, h, and k; then we have the inequality ξ1 ≤ ξ0, and

ξn ≤ ξn–1 +
n∑

j=2

ω
(α)
j (ξn–j – ξn–j+1), n ≥ 2. (14)

Based on Eq. (14), for n = 2, we obtain

ξ2 ≤ ξ1 + ω
(α)
2 (ξ0 – ξ1). (15)

Then, by repeating the same process as in Eq. (15), we can get

ξj ≤ ξj–1, j = 1, 2, . . . , n – 1. (16)

From Eq. (16), we finally have

ξn ≤ ξn–1 +
n∑

j=2

ω
(α)
j (ξn–j – ξn–j+1) ≤ ξn–j. (17)

Since each term in the sum shown in Eq. (17) is negative, it implies that the inequalities in
Eqs. (16) and (17) can be generalized into

ξn ≤ ξn–1 ≤ ξn–2 ≤ · · · ≤ ξ1 ≤ ξ0. (18)

Thus, ξn = |Un
j | ≤ ξ0 = |U0

j | = |fj|, which entails ‖Un
j ‖ ≤ ‖fj‖, and we have stability. It fol-

lows that the numerical solution of the approximation equation to Eq. (1) converges to the
exact solution as h, k → 0. �

5 QSPAOR iterative method
In this section, we discuss solving the tridiagonal linear system as in Eq. (9). To formulate
the QSPAOR iterative method, first convert the initial linear system into the precondi-
tioned system in the form of

A∗
˜x =

˜
f ∗. (19)

Referring to Eq. (19), the new coefficient matrix is obtained by

A∗ = PAPT , (20)

then the right-hand side functional vector is

˜
f ∗ = P

˜
f , (21)
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and lastly, the approximate solutions are calculated using

˜U = PT

˜x. (22)

Based on the transformation that we use in Eqs. (20)–(22), the matrix P is defined as a
preconditioning matrix, that is,

P = I + S, (23)

where

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 –r′
1 0 0 0 0

0 0 –r′
2 0 0 0

0 0 0 –r′
3 0 0

0 0
. . . . . . . . . 0

0 0 0 0 0 –r′
m–1

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(m–1)×(m–1)

,

and the matrix I is an identity matrix.
Next, we let the coefficient matrix A∗ in Eq. (19) be given in the form of a sum as follows:

A∗ = D – L – V . (24)

Based on the sum of three matrices in Eq. (24), we represent D, L, and V as the diago-
nal, the lower and the upper triangular matrices, respectively. Hence, using the precon-
ditioned system in Eq. (19) and matrices in Eq. (24), the proposed iterative method for
solving TFDE, QSPAOR, can be generally formulated as

˜x
(K+1) = (D – ωL)–1[βV + (β – ω)D + (1 – β)D

]
˜x

(K ) + β(D – ωL)–1

˜
f ∗, (25)

where ˜x
(K+1) denotes the vector to be determined at the (K + 1)th iteration.

The operation of the QSPAOR method is executed as in Algorithm 1.

Algorithm 1 (QSPAOR method)
i. Initialize ˜U ← 0 and ε ← 10–10.

ii. For j = 4, 8, . . . , n – 4 and for i = 4, 8, . . . , m – 4, calculate

˜x
(K+1) = (D – ωL)–1[βV + (β – ω)D + (1 – β)D]˜x

(K ) + β(D – ωL)–1

˜
f ∗, and then

˜U
(K+1) = PT

˜x
(K+1).

iii. Convergence criterion ‖ ˜U
(K+1) – ˜U

(K )‖ ≤ ε. If the process converged, go to Step (iv).
Otherwise, repeat Step (i).

iv. Display approximate solutions.

6 Convergence of AOR method
As the QSPAOR iterative method has been formulated, in this section, we discuss the
convergence of AOR method that we implement for the solution process to solve Eq. (1).
Therefore, let us consider the AOR method [32]:

˜x
(K+1) = (D – ωL)–1[βV + (β – ω)L + (1 – β)D

]
˜x

(K ) + β(D – ωL)–1

˜
f ∗, (26)
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with n = 0, 1, 2, . . . , where

Lω,β = (D – ωL)–1[(1 – β)D + (β – ω)L + βV
]

= D – β(D – ωL)–1A. (27)

Theorem 6.1 If the AOR method (16) converges (ρ(Lω,β) < 1) for some β ,ω �= 0, then exactly
one of the following statements holds:

(i) ω ∈ (0, 2) and β ∈ (–∞, 0) ∪ (0, +∞),
(ii) ω ∈ (–∞, 0) ∪ (2, +∞) and β ∈ ( 2ω

(2–ω) , 0) ∪ (0, 2).

Proof It is known that the eigenvalues λj of Lω,β (β ,ω �= 0) are connected with the eigen-
values ξj of Lω,ω ≡ Lω (Lω is the SOR iteration matrix) by the relationship

λj =
(

1 –
β

ω

)
+

β

ω
ξj, j = 2(2)m – 2. (28)

From Eq. (28), we get ξj = 1 – ω
β

+ ω
β
λj, j = 2(2)m – 2. We also note that

∏m–2
j=2,4,... ξj = (1 – ω)n.

Therefore,
∏m–2

j=2,4,...(1– ω
β

+ ωλj
β

)–(1–ω)n and since |λj| < 1, j = 2(2)m–2 from hypothesis,
we obtain

∣∣(1 – ω)n∣∣ =
m–2∏

j=2,4,...

∣∣∣∣1 –
ω

β
+

ω

β
λj

∣∣∣∣ ≤
m–2∏

j=2,4,...

(∣∣∣∣1 –
ω

β

∣∣∣∣ +
∣∣∣∣ωβ |λj|

∣∣∣∣
)

<
m–2∏

j=2,4,...

(∣∣∣∣1 –
ω

β

∣∣∣∣ +
∣∣∣∣ωβ

∣∣∣∣
)

=
(∣∣∣∣1 –

ω

β

∣∣∣∣ +
∣∣∣∣ωβ

∣∣∣∣
)n

, (29)

that is,

|1 – ω| <
∣∣∣∣1 –

ω

β
+

∣∣∣∣ωβ
∣∣∣∣
∣∣∣∣, (30)

or equivalently,

∣∣β(1 – ω)
∣∣ < |β – ω| + |ω|. (31)

It can be shown that Eq. (31) holds if and only if exactly one of the following statements
holds:

(i) ω ∈ (0, 2) and β ∈ (–∞, 0) ∪ (0, +∞),
(ii) ω ∈ (–∞, 0) ∪ (2, +∞) and β ∈ ( 2ω

(2–ω) , 0) ∪ (0, 2),
and the proof is completed. �

Theorem 6.2 If the AOR method with ω = 0 converges (ρ(L0,β) < 1) then 0 < β < 2.

Proof If ω = 0, then L0,β = (1 – β)D + β(L + U) = (1 – β)D + βB. If μj, j = 2(2)m – 2 are the
eigenvalues of B, then for the eigenvalues λj of L0,β we get

λj = 1 – β + βμj, j = 2(2)m – 2, (32)
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which implies

μj =
1
β

(β – 1 + λj), j = 2(2)m – 2. (33)

But since B = 0, we get

m–2∑
j=2,4,...

μj = 0 =
m–2∑

j=2,4,...

1
β

(β – 1 + λj). (34)

From Eq. (34) we have

m–2∑
j=2,4,...

λj =
(

m
2

– 1
)

· (1 – β), (35)

and consequently,

∣∣∣∣
(

m
2

– 1
)

(1 – β)
∣∣∣∣ =

∣∣∣∣∣
m–2∑

j=2,4,...

λj

∣∣∣∣∣ ≤
m–2∑

j=2,4,...

|λj < n|. (36)

Since |λj| < 1, j = 2(2)m – 2 from the hypothesis, |( m
2 – 1)(1 – β)| < n, or 0 < β < 2. �

7 Time-fractional diffusion examples
For the numerical simulation, we consider two examples of the TFDE problems to evaluate
the efficiency of the proposed QSPAOR against the previously developed iterative meth-
ods in our research, namely HSPAOR and FSPAOR. The three criteria, as mentioned in
Sect. 2, are compared for each of the three different values of α, i.e., α = 0.25, α = 0.50,
and α = 0.75. The iteration cycle for the running program based on Algorithm 1 is limited
by the tolerance ε = 10–10. We consider the following two TFDE examples, namely the
time-fractional initial boundary value problems from [6]:

Example 1

∂αU(x, t)
∂tα

=
∂2U(x, t)

∂x2 , 0 < α ≤ 1, 0 ≤ x ≤ γ , t > 0. (37)

The boundary conditions that we implement are stated in fractional terms as follows:

U(0, t) =
2ktα

�(α + 1)
, U(
, t) = 
2 +

2ktα

�(α + 1)
, (38)

and to initiate the approximate solutions, we set the initial condition

U(x, 0) = x2. (39)

Example 2

∂U(x, t)
∂t

= �(1.2)xβ ∂βU(x, t)
∂xβ

+ 3x2(2x – 1)e–t . (40)
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Table 1 Numerical results for Example 1

M Method α = 0.25 α = 0.50 α = 0.75

K Seconds MAE K Seconds MAE K Seconds MAE

128 FSPAOR 1351 5.80 9.97e–05 694 0.92 9.86e–05 318 0.37 1.30e–04
HSPAOR 409 2.47 9.97e–05 253 0.46 9.85e–05 93 0.12 1.30e–04
QSPAOR 200 0.92 9.96e–05 124 0.24 9.84e–05 44 0.07 1.29e–04

256 FSPAOR 4192 24.95 9.97e–05 2694 7.52 9.90e–05 1307 2.92 1.30e–04
HSPAOR 1605 11.00 9.97e–05 1027 4.47 9.89e–05 492 1.46 1.29e–04
QSPAOR 784 4.19 9.95e–05 502 2.10 9.88e–05 241 0.87 1.28e–04

512 FSPAOR 15,608 236.25 9.99e–05 10,085 62.59 9.90e–05 4947 29.56 1.32e–04
HSPAOR 6029 114.76 9.97e–05 3887 32.61 9.90e–05 1900 15.05 1.31e–04
QSPAOR 2950 43.02 9.95e–05 1540 15.21 9.89e–05 928 7.21 1.30e–04

1024 FSPAOR 54,130 3378.36 9.99e–05 33,652 432.78 9.90e–05 16,609 215.41 1.40e–04
HSPAOR 21,478 1613.83 9.97e–05 13,387 212.95 9.88e–05 6498 113.40 1.40e–04
QSPAOR 10,640 898.67 9.95e–05 5531 103.96 9.87e–05 3479 53.67 1.39e–04

2048 FSPAOR 196,523 14,378.36 9.99e–05 121,947 3026.56 9.90e–05 59,500 1211.32 1.71e–04
HSPAOR 77,153 7189.71 9.97e–05 47,933 1349.79 9.90e–05 23,344 694.40 1.71e–04
QSPAOR 38,471 3078.90 9.96e–05 19,711 601.76 9.88e–05 11,740 321.85 1.70e–04

Table 2 Numerical results for Example 2

M Method α = 0.25 α = 0.50 α = 0.75

K Seconds MAE K Seconds MAE K Seconds MAE

128 FSPAOR 406 3.32 1.95e–02 153 2.27 8.29e–02 142 1.62 1.37e–01
HSPAOR 136 1.48 1.94e–02 77 1.30 8.30e–02 71 0.67 1.36e–01
QSPAOR 49 0.72 1.94e–02 34 0.64 8.29e–02 19 0.33 1.35e–01

256 FSPAOR 1270 14.75 1.95e–02 591 8.21 8.29e–02 236 4.28 1.37e–01
HSPAOR 618 7.21 1.94e–02 287 4.33 8.30e–02 111 2.33 1.36e–01
QSPAOR 270 3.35 1.94e–02 141 2.03 8.29e–02 81 1.96 1.35e–01

512 FSPAOR 4841 91.72 1.95e–02 2330 53.97 8.29e–02 1064 31.84 1.37e–01
HSPAOR 2365 44.07 1.95e–02 1139 23.24 8.30e–02 519 12.77 1.36e–01
QSPAOR 1044 21.10 1.94e–02 592 11.87 8.29e–02 324 5.25 1.35e–01

1024 FSPAOR 16,373 152.97 1.94e–02 8471 428.76 8.29e–02 4029 323.97 1.37e–01
HSPAOR 8816 61.07 1.94e–02 4273 213.24 8.30e–02 1987 148.63 1.36e–01
QSPAOR 3908 29.58 1.94e–02 1895 106.90 8.29e–02 1219 51.76 1.35e–01

2048 FSPAOR 59,608 853.87 1.94e–02 31,048 1121.34 8.29e–02 14,899 614.63 1.37e–01
HSPAOR 29,771 426.83 1.95e–02 15,340 511.24 8.30e–02 7344 253.97 1.36e–01
QSPAOR 13,203 209.50 1.94e–02 6852 251.99 8.29e–02 4497 123.18 1.35e–01

For the example of Eq. (40), we initiate the approximate solutions using the initial condi-
tion U(x, 0) = x2 – x3 and implement the zero Dirichlet conditions. Meanwhile, the exact
solution to this problem is U(x, t) = x2(1 – x)e–t .

All-important numerical results from the implementation of QSPAOR, HSPAOR, and
FSPAOR methods to solve the numerical examples in Eqs. (37) and (40) are recorded in
Tables 1 and 2. For the consistency inspection, we run the numerical simulation by in-
creasing the values of mesh sizes, that is, m = 128, 256, 512, 1024, and 2048. Based on the
results tabulated in Tables 1 and 2, we found that QSPAOR required the least number
of iterations and the shortest computation time to finish computing the two examples’
solutions compared to the HSPAOR and FSPAOR. The numerical results are similar for
all values of mesh sizes and parameter α. These results attribute the significant improve-
ment in computing efficiency to the quarter-sweep technique, which computes a quarter
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of the total number of mesh points using PAOR instead of all mesh points in the solution
domain.

The results can be summarized as follows. For Example 1, the number of iterations
and computation time have declined by 80.25–85.36% and 71.89–81.78%, respectively,
if QSPAOR method is compared to the FSPAOR method. When QSPAOR is compared
to HSPAOR, the number of iterations and the computation time have reduced by about
49.20–54.74% and 44.18–57.27%, respectively. For Example 2, QSPAOR has reduced the
number of iterations and the computation time of FSPAOR by about 72.13–84.16% and
67.16–80.90% respectively. When compared to HSPAOR, these improvements became
43.57–64.35% and 38.57–57.28%, respectively. Overall, the accuracy of the three numeri-
cal methods, i.e., QSPAOR, HSPAOR, and FSPAOR, is comparable.

8 Conclusion
This paper solved a one-dimensional TFDE by applying the quarter-sweep finite-differ-
ence scheme and the PAOR iterative method. Using the quarter-sweep technique and
PAOR iterative method, the computational complexity of computing the solutions of the
TFDE has been successfully reduced. The quarter-sweep calculated only a quarter of the
total mesh points by using PAOR while averaging the remaining mesh points, and the
result is promising. The numerical experiments demonstrated the efficiency of the pro-
posed QSPAOR method, in which the number of iterations and computation time have
been reduced significantly, compared to the HSPAOR and FSPAOR methods. In addition
to that, the accuracy of the three tested methods is almost identical. The study found that
the computational complexity reduction by the quarter-sweep and the PAOR method can
be an efficient numerical method to solve TFDE.
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