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1. Introduction

In recent years, many studies use fractional partial differential equations (FPDEs)
[14, 7, 15, 3, 2] for solving fractional problems to derive numerical and/or an-
alytical solutions. Based on iterative methods for solving a one-dimensional
diffusion model with constant coefficients and analytical solutions and for an
instant a fractional derivative replaces the first-order space partial derivative in
a diffusion model and lead to slower diffusion [14]. Therefore, there are numer-
ical methods proposed to solve the time-fractional diffusion equations (TFDE),
such as transform methods [22], finite elements together with the method of
lines [15], explicit and implicit finite difference methods [15, 24]. Nevertheless,
the explicit methods are conditionally stable, these finite difference schemes are
available in the literature [24].

To solve the time-fractional diffusion equations (TFDE) problem needs to be
discretized. Based on the implicit finite difference scheme and Caputo fractional
operator, the approximation equations can be used to construct a linear system
at each time level. To solve linear systems, many researchers also have discussed
the concept of iterative methods, see [20, 10, 19] and reference therein. Besides
these iterative methods, the concept of block iteration has also been introduced
by [8]. Furthermore, Ibrahim and Abdullah [11], and Yousif and Evans [21]
have pointed out the efficiency of block iterative methods.

For solving the large linear system, Abdullah [1] initiated Half-Sweep iter-
ation, which is one of the most known and widely used iterative techniques to
solve in solving any linear systems. Differently from the Half–sweep iteration
approach, Othman and Abdullah [16] have expanded this approach to initi-
ate the Modified Explicit Group (MEG) method based on the quarter-sweep
approach. It is proved that this method is one of the most efficient block it-
erative methods in solving any linear system as compared with ED and EDG
iterative methods. Also, another researcher has shown the capability of the
quarter-sweep iteration in solving nonlinear system, see [5]. Among the exist-
ing iterative methods, the preconditioned iterative methods [4, 9] have been
widely accepted to be one of the efficient methods for solving linear systems.

Because of the advantages of these iterative methods, this paper aims to
construct and investigate the effectiveness of the Quarter-Sweep Preconditioned
Gauss-Seidel (QSPGS) iterative method for solving time fractional parabolic
partial differential equations (TPPDE’s) based on the Caputo implicit finite dif-
ference approximation equation. In this paper, we investigate the performance
of the Quarter-Sweep Preconditioned Gauss-Seidel (QSGS) iterative method
for solving time-fractional parabolic partial differential equations (TPPDE’s)
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based on the Caputo implicit finite difference approximation equation. To
demonstrate the capability of the Quarter-Sweep Preconditioned Gauss-Seidel
(QSPGS) method, we also implement the Full-Sweep Preconditioned Gauss-
Seidel or FSPGS and Half-Sweep Preconditioned Gauss-Seidel or HSPGS iter-
ative methods being used as a control method.

2. Preliminaries

To begin the derivation of the QSPGS iterative method, let us consider the
time-fractional diffusion equation (TFDE’s) defined as

∂αu(x, t)

∂αt
= a(x)

∂2u(x, t)

∂x2
+ b(x)

∂u(x, t)

∂x
+ c(x)u(x, t), (1)

where a(x), b(x) and c(x) are known functions or constants whereas α is a
parameter which refers to the fractional-order of time derivative. Before to set
the discretizing problem (1), let us remind some definitions from the theory of
fractional calculus.

Definition 1. ([17]) The Riemann-Liouville integral operator Jα of frac-
tional order α is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)αf(t)dt, α > 0, x > 0. (2)

Definition 2. ([17]) The Caputo fractional derivative operator Dα of
orderα > 0 is defined as

Dαf(x) =
1

Γ(m− α)

∫ x

0

f (m)(t)

(x− t)α−m+1
dt, (3)

with m − 1 < α ≤ m, m ∈ N, x > 0. In (2) and (3), Γ(α) is the well-known
Gamma function

Γ(α) =

∫ ∞

0
xt−1e−xdx. (4)

For solving the numerical of time-fractional diffusion equation (TFDE’s),
in equation (1), we get numerical approximations by using the Caputo deriva-
tive definition with Dirichlet boundary conditions and consider the non-local
fractional derivative operator. This approximation equation can be categorized
as an unconditionally stable scheme. On strength of Problem (1), the solution
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domain of the problem has been restricted to the finite space domain 0 ≤ x ≤ γ,
with 0 < α < 1 whereas the parameter α refers to the fractional-order of space
derivative. To solve Problem (1), let us consider the initial and boundary con-
ditions of Problem (1) be given as

u(0, t) = g0(t), u(l, t) = g1(t), (5)

and the initial condition

u(x, 0) = f(x), (6)

where g0(t), g1(t), and f(x) are given functions. Based on a discretized approx-
imation to the time-fractional derivative in equation (1), we consider Caputo’s
fractional partial derivative of order α, as

∂αu(x, t)

∂αt
=

1

Γ(n− 1)

∫ ∞

0

∂u(x− s)

∂t
(t− s)−αds, t > 0, 0 < α < 1. (7)

3. The Caputo implicit finite difference approximation

Based on equation (7), the formulation of the Caputo fractional partial deriva-
tive of the first order approximation method is given as

Dα
t Ui,n

∼= σα,kΣ
n
j=1ω

α
j (Ui,n−j+1 − Ui,n−j), (8)

and we have the following expressions

σα,k =
1

Γ(1− α)(1− α)1−α
, (9)

and

ωα
j = j1−α − (j − 1)1−α. (10)

First, to discretize Problem (1), let the solution domain of the problem be
partitioned uniformly. To do this, we consider some positive integers m and
n in which the grid sizes in space and time directions for the finite-difference
algorithm are defined as h = δx = γ/m and k = δt = T/n, respectively. Ac-
cording to these grid sizes, we develop the uniform grid network of the solution
domain where the grid points in the space interval [0, γ] are shown as the num-
bers xi = ih, i = 0, 1, 2, ...,m, and the grid points in the time interval [0, T ]
are labeled tj = jk, j = 0, 1, 2, ..., n. Then the values of the function U(x, t) at
the grid points are denoted as Ui,j = U(xi, tj). According to equation (8) and
the implicit finite difference discretization scheme, the Caputo implicit finite
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difference approximation equation of Problem (1) to the grid point centered at
(xi, tj) = (ih, jk) is given as

σα,kΣ
n
j=1ω

α
j (Ui,n−j+1 − Ui,n−j) = ai

1

16h2
(Ui−4,n − 2Ui,n

+ Ui+4,n) + bi
1

8h
(Ui+4,n − Ui−4,n) + ciUi,n, (11)

for i = 4, 8, ...,m−4. Thus, based on equation (11), this approximation equation
is known as the fully implicit finite difference approximation equation which is
consistent first-order accuracy in time and second-order in space. Particularly,
the approximation equation (11) can be rewritten based on the specified time
level. Immediately, we have for n ≥ 2:

σα,kΣ
n
j=1ω

α
j (Ui,n−j+1 − Ui,n−j) = piUi−4,n + qiUi,n + riUi+4,n, (12)

where

pi =
ai

16h2
− bi

8h
, qi = ci −

ai
8h2

, ri =
ai

16h2
+

bi
8h

. (13)

Also, we get for n = 1,

−piUi−4,1 + q ∗i Ui,1 − riUi+4,1 = fi,1, i = 4, 8, ...,m − 4, (14)

where ω
(α)
j = 1, q∗i = σα,k − qi, fi,1 = σα,kUi,1 Furthermore, based on equation

(14), it can be seen that the tridiagonal linear system can be constructed in
matrix form as

AU = f, (15)

where

A =



















q∗4 −r4
−P8 q∗8 −r8

−p12 q∗12 −r12
. . .

. . .
. . .

−pm−8 q∗m−8 −rm−8

−pm−4 q∗m−4



















(m
4
−1)×(m

4
−1)

, (16)

U =
[

U4,1 U8,1 U12,1 . . . Um−8,1 Um−4,1

]

, (17)

f =
[

U4,1 + p1U0,1 U8,1 U12,1 . . . Um−8,1 Um−4,1 + pm−4Um,1

]

. (18)
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4. Analysis of stability

In this section, we have considered the stability analysis of the implicit finite
difference approximation equation in equation (11). For stability analysis, we
will use Von-Neumann’s [13] and the Lax equivalence theorem [18]. It follows
that the numerical solution of the approximation equation in equation (11)
converges to the exact solution as h, k → 0.

Theorem 3. The fully implicit numerical method (11), the solution to
equation (1) with 0 < α < 1 on the finite domain 0 ≤ x ≤ 1, with zero boundary
condition u(0, t) = u(l, t) = 0 for all t ≥ 0 is consistent and unconditionally
stable.

Proof. To examine the stability of the proposed method, we find for the
solution of the form Un

j = ζne
iωjh, i =

√
−1, ω is real. Therefore, equation (12)

becomes

σα,kζn−1e
iωjh − σα,kΣ

n
j=2ω

(α)
j (ζn−j+1e

iωjh − ζn−je
iωjh)

= −piζneiω(j−4)h + (σα,k − qi)ζne
iωjh − riζne

iω(j+4)h. (19)

By simplifying and reordering over equation (19), we have

σα,kζn−1 − σα,kΣ
n
j=2ω

(α)
j (ζn−j+1 − ζn−j)

= ζn(((−pi − ri) cos(ωh)) + (σα,k − qi)). (20)

This can be reduced to

ζn =
ζn−1 +Σn

j=2ω
(α)
j (ζn−j − ζn−j+1)

1 + (−pi−ri)
σα,k

cos(ωh)− qi
σα,k

. (21)

From equation (21), it can be observed that the conducted as

(1 +
(−pi − ri)

σα,k
cos(ωh)− qi

σα,k
) ≥ 1, (22)

for all α, n, ω, h and k, we have

ζ1 ≤ ζ0, (23)

and

ζn ≤ ζn−1 +Σn
j=2ω

(α)
j (ζn−j − ζn−j+1), n ≥ 2. (24)
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Thus, for n = 2, the last inequality implies

ζ2 ≤ ζ1 + ω
(α)
2 (ζ0 − ζ1). (25)

Again, repeating the above process, we can get

ζj ≤ ζj−1, j = 1, 2, ..., n − 1. (26)

From equation (24), we finally have

ζn ≤ ζn−1 +Σn
j=2ω

(α)
j (ζn−j − ζn−j+1) ≤ ζn−j. (27)

Since each term in the summation is negative, it shows that the inequalities
(23) and (24) imply

ζn ≤ ζn−1 ≤ ζn−2 ≤ ... ≤ ζ1 ≤ ζ0. (28)

Thus

ζn = |Un
j | ≤ ζ0 = |U0

j | = |fj|, (29)

which entails ||Un
j || ≤ ||fj ||, and we have stability.

5. Formulation of Quarter-Sweep Preconditioned Gauss-Seidel
(QSPGS)

Concerning the tridiagonal linear system (16), the characteristics of its coef-
ficient matrix are large scale and sparse. As mentioned in Section 1, many
researchers have discussed various iterative methods, such as Gunawardena [9]
and Young [20]. To obtain numerical solutions of the tridiagonal linear system
(16), we consider the Quarter-Sweep Preconditioned Gauss-Seidel (QSPGS) it-
erative method, which is the most known and widely used for solving any linear
system. Before applying the QSPGS iterative method, we need to transform
the original linear system (15) into the preconditioned linear system

A∗x = f∗, (30)

where A∗ = PAP T , f∗ = Pf,U = P Tx. The matrix P is called a precondi-
tioned matrix and defined as [12]

P = I + S, (31)
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where

S =



















0 −r1 0 0 0 0
0 0 −r2 0 0 0
0 0 0 −r3 0 0

0 0 0 0
. . . 0

0 0 0 0 0 −rm−1

0 0 0 0 0 0



















(m−1)×(m−1)

, (32)

and the matrix I is an identical matrix. To formulate the QSPGS method, let
the coefficient matrix A∗ in (30) be expressed as the summation of the three
matrices

A∗ = D − L− V, (33)

where D, L, and V are diagonal, lower triangular, and upper triangular matri-
ces, respectively. By using equation (30), the formulation of QSPGS iterative
method can be defined generally as

x(k+1) = (D − L)−1V x(k)(D − L)−1f∗, (34)

where x(k+1) represents an unknown vector at (k + 1)th iterations. The imple-
mentation of the QSPGS iterative method can be described in Algorithm 1.

Algorithm 1: QSPGS
i. Initialize U ← 0 and ǫ← 10−10,
ii. For j = 1, 2, ..., n, implement

For i = 1, 2, ...,m − 1, calculate
x(k+1) = (D − L)−1V x(k) + (D − L)−1f∗
Convergence test. If the convergence criterion i.e. ||U (k+1) − U (k)|| ≤ ǫ is
satisfied, go to Step (iii). Otherwise, go back to Step (i).
iii. Display approximate solutions.

6. Numerical experiment

In this section, we use one example of the time-fractional diffusion equation
to show the accuracy and effectiveness properties of the Quarter Sweep Pre-
conditioned Gauss-Seidel (QSPGS) compare Full-Sweep Preconditioned Gauss-
Seidel (FSPGS) and Half Sweep Preconditioned Gauss-Seidel (HSPGS) itera-
tive methods. These three parameters were executed on the computer using a
program written in C language. For comparison purpose, three parameters will
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be considered such as the number of iterations, execution time (in seconds),
and maximum absolute error at three different values of α = 0.25, 0.50, and
0.75. For the implementation of these three iterative schemes, the convergence
test considered the tolerance error, which is fixed as ǫ = 10−10. To illustrate
the performance of QSPGS iteration method, let us consider the time-fractional
initial boundary value problem be given as follows.

Example 1: ([6])

∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
, 0 < α ≤ 1, 0 ≤ x ≤ γ, t > 0, (35)

where the boundary conditions are stated in fractional terms

u(0, t) =
2ktα

Γ(α+ 1)
, u(l, t) = l2 +

2ktα

Γ(α+ 1)
, (36)

and the initial condition u(x, 0) = x2. Following Problem (35), as taking α = 1,
it can be seen that equation (35) can be reduced to the standard diffusion
equation

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, 0 ≤ x ≤ γ, t > 0, (37)

subject to the initial condition u(x, 0) = x2, and the boundary conditions
u(0, t) = 2kt, u(l, t) = l2 + 2kt Then, the analytical solution of equation (37) is
obtained as follows:

u(x, t) = x2 + 2kt. (38)

Now, by applying the series

u(x, t) = Σm−1
n=0

∂nu(x, 0)

∂tn
tn

n!
+ Σ∞

n=1Σ
m−1
n=0

∂mn+iu(x, 0)

∂tmn+i

tnα+i

Γ(nα+ i+ 1)
, (39)

u(x, t) for 0 < α ≤ 1, it can be shown that the analytical solution of equation
(35) is given as

u(x, t) = x2 + 2k
tα

Γ(α+ 1)
. (40)

Example 2: ([6]) Let us consider the following time-fractional initial bound-
ary value problem be defined as

∂αu(x, t)

∂tα
=

1

2
x2

∂2u(x, t)

∂x2
, 0 < α ≤ 1, 0 ≤ x ≤ γ, t > 0, (41)
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where the boundary conditions are given as u(0, t) = 0, u(1, t) = et and the
initial condition u(x, 0) = x2. From equation (41), as taking α = 1, it can be
shown that equation (41) can also be reduced to the standard diffusion equation

∂u(x, t)

∂t
=

1

2
x2

∂2u(x, t)

∂x2
, 0 ≤ x ≤ γ, t > 0. (42)

Then, the analytical solution of equation (42) is obtained as follows:

u(x, t) = x2et. (43)

Now, by applying the series

u(x, t) = Σm−1
n=0

∂nu(x, 0)

∂tn
tn

n!
+ Σ∞

n=1Σ
m−1
n=0

∂mn+iu(x, 0)

∂tmn+i

tnα+i

Γ(nα+ i+ 1)
, (44)

u(x, t) for 0 < α ≤ 1, it can be shown that the analytical solution of equation
(41) is stated as

u(x, t) = x2[1 +
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...]. (45)

All results of numerical experiments for equation (35) and (41), which were
obtained from the implementation of FSPGS, HSPGS and QSPGS iterative
methods have been recorded in Table 1 until Table 6 at different values of mesh
sizes, m = 128, 256, 512, 1024, and 2048.

7. Conclusion

As a conclusion for the numerical solution of the time-fractional diffusion prob-
lems, this paper deals with the implementation of the QSPGS iterative method
to solve a linear system generated by the Quarter-Sweep Caputo implicit ap-
proximation equations. Through numerical experiments results from such Ta-
bles 1, 2 and 3 by comparing the performance between the FSPGS, HSPGS
and QSPGS iterative methods at three different values of α = 0.25, 0.50 and
0.75, it can be seen that the percentage reduction of the number of iterations
for the QSGS iterative method has declined approximately by 71.99− 92.72%,
50.71− 95.53%, and 40.41− 96.45% respectively as compared with the FSPGS
and HSPGS method. Implementations of computational time for the QSPGS
method are much faster about 69.78 − 98.09%, 30.64 − 88.35%, and 25.03 −
89.99%, respectively, than the FSPGS and HSPGS method. It can be concluded
that the QSPGS method involves less number of iterations and computational
time as compared with FSPGS and HSPGS methods. According to the accu-
racy of FSPGS, HSPGS, and QSPGS iterative methods, it can be stated that
the numerical solutions of both methods are in good agreement.
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Table 1: Numerical result of Example 1 at α = 0.25

M Method k time Max Error

128 FSPGS 7292 35.86 9.96e-05
HSPGS 1966 5.64 9.96e-05
QSPGS 528 1.41 9.96e-05

256 FSPGS 26884 261.56 9.98e-05
HSPGS 7292 37.36 9.96e-05
QSPGS 1966 5.45 9.96e-05

512 FSPGS 98422 1916.28 1.00e-04
HSPGS 26884 272.45 9.98e-05
QSPGS 7292 35.88 9.96e-05

1024 FSPGS 357258 14064.44 1.04e-04
HSPGS 98422 2025.13 1.04e-04
QSPGS 26884 267.44 9.98e-05

2048 FSPGS 1183293 4104.17 1.36e-04
HSPGS 339197 3121.13 1.36e-04
QSPGS 94141 1120.08 9.98e-05

Table 2: Numerical result of Example 1 at α = 0.50

M Method k time Max Error

128 FSPGS 4715 2.23 9.84e-05
HSPGS 1270 1.59 9.84e-05
QSPGS 342 0.98 9.84e-05

256 FSPGS 17417 16.68 9.87e-05
HSPGS 4715 10.28 9.87e-05
QSPGS 1270 3.78 9.87e-05

512 FSPGS 63298 123.01 9.96e-05
HSPGS 17417 95.09 9.87e-05
QSPGS 4715 23.31 9.87e-05

1024 FSPGS 232784 1007.47 1.03e-05
HSPGS 63928 893.24 9.95e-05
QSPGS 17417 171.84 9.87e-05

2048 FSPGS 1150153 3239.84 1.34e-05
HSPGS 232784 2511.66 1.34e-05
QSPGS 61246 975.43 9.98e-05
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Table 3: Numerical result of Example 1 at α = 0.75

M Method k time Max Error

128 FSPGS 2319 1.93 1.30e-04
HSPGS 625 1.03 1.30e-04
QSPGS 170 0.87 1.30e-04

256 FSPGS 8585 12.37 1.30e-04
HSPGS 2319 8.23 1.30e-04
QSPGS 625 2.27 1.30e-04

512 FSPGS 31619 62.78 1.31e-04
HSPGS 8585 46.08 1.31e-04
QSPGS 2319 11.80 1.31e-04

1024 FSPGS 115617 820.93 1.35e-04
HSPGS 31619 636.78 1.35e-04
QSPGS 8585 84.30 1.35e-04

2048 FSPGS 362784 1305.50 1.35e-04
HSPGS 115627 807.13 1.35e-04
QSPGS 31691 629.00 1.35e-04

Table 4: Numerical result of Example 2 at α = 0.25

M Method k time Max Error

128 FSPGS 2873 8.48 1.95e-02
HSPGS 774 5.05 1.95e-02
QSPGS 209 3.42 1.95e-02

256 FSPGS 10624 96.54 1.95e-02
HSPGS 2873 19.09 1.95e-02
QSPGS 774 6.93 1.95e-02

512 FSPGS 39608 648.25 1.95e-02
HSPGS 10624 108.69 1.95e-02
QSPGS 2873 18.58 1.95e-02

1024 FSPGS 142635 791.55 1.95e-02
HSPGS 39068 582.43 1.95e-02
QSPGS 10624 107.34 1.95e-02

2048 FSPGS 487355 2543.23 1.95e-02
HSPGS 128676 1326.21 1.95e-02
QSPGS 36470 275.38 1.95e-02
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Table 5: Numerical result of Example 2 at α = 0.50

M Method k time Max Error

128 FSPGS 1398 7.00 8.28e-02
HSPGS 378 5.11 8.28e-02
QSPGS 104 3.29 8.28e-02

256 FSPGS 5162 35.69 8.29e-02
HSPGS 1398 12.12 8.29e-02
QSPGS 378 6.06 8.28e-02

512 FSPGS 18957 277.23 8.29e-02
HSPGS 5162 57.19 8.29e-02
QSPGS 1398 11.90 8.29e-02

1024 FSPGS 69108 492.97 8.29e-02
HSPGS 38957 390.80 8.30e-02
QSPGS 5162 56.40 8.30e-02

2048 FSPGS 240051 1781.32 8.29e-02
HSPGS 67817 920.14 8.30e-02
QSPGS 19430 252.12 8.28e-02

Table 6: Numerical result of Example 2 at α = 0.75

M Method k time Max Error

128 FSPGS 655 4.44 1.37e-01
HSPGS 178 2.59 1.37e-01
QSPGS 50 1.20 1.37e-01

256 FSPGS 2420 15.95 1.37e-01
HSPGS 655 8.50 1.37e-01
QSPGS 178 5.56 1.37e-01

512 FSPGS 8911 184.75 1.37e-01
HSPGS 2420 30.08 1.37e-01
QSPGS 655 8.36 1.37e-01

1024 FSPGS 32602 420.11 1.37e-01
HSPGS 8911 189.50 1.37e-01
QSPGS 2420 29.49 1.37e-01

2048 FSPGS 116801 951.53 1.37e-01
HSPGS 33318 511.32 1.37e-01
QSPGS 8911 188.66 1.37e-01
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