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Abstract. This paper considers the numerical solution of a one-dimensional space-fractional 

diffusion equation. To obtain the solution, we use an unconditionally stable implicit finite 

difference approximation with the Caputo’s space-fractional operator. We study on improving 

the convergence rate of the solution while solving the generated linear system through the 

approximation equation iteratively. In our study, we apply the preconditioning technique to 

construct a preconditioned linear system which eventually derives into a Full-Sweep 

Preconditioned AOR. From the presented results, we show that the proposed Full-Sweep 

Preconditioned AOR iterative method has superiority in efficiency compared to the basic Full-

Sweep Preconditioned SOR and Full-Sweep Preconditioned Gauss-Seidel iterative methods. 

1. Introduction 
Fractional partial differential equations (FPDEs), have been extensively studied not only to describe the natural 

occurrences but also to understand several models in both physical science and social science fields. Based on 

the brief literature findings, [1] studied on the merging of the local volatility approach and the fractional calculus 

to extend the Constant Elasticity of Variance model, which is a stochastic volatility model, to the fractional and 

mixed-fractional cases. This author showed that the fractional and mixed-fractional Constant Elasticity of 

Variance model could address the smile-skew issue. Then, [2] investigated the use of Caputo’s and Atangana-

Baleanu’s fractional operators to obtain a generalized tuberculosis model with two age groups of human. They 

also presented a novel numerical approach to solve the formulated fractional model sand showed that the 

Atangana-Baleanu’s operator is more flexible than the Caputo’s. Other than that, [3] applied Caputo’s fractional-

order and integer-order to simulate and study the gross domestic product growth in China. They showed that 

Caputo’s fractional-order model not only able to fit the gross domestic product growth well but also had a better 

prediction. 

Since the application of the fractional calculus provides a better advantage to understand several 

mathematical models, many researchers proposed numerical methods to solve theFPDEs. From these many 

proposed methods, [4] consider several finite-difference and element methods in solving the Distributed-Order 

Time Fractional Diffusion Equations. They have developed three numerical schemes to obtain the solution to the 

mathematical model accurately. Then, [5] introduced a spectral collocation method based on the Lagrange’s 

polynomials to solve the one-dimensional space fractional diffusion equations approximately. Many researchers 

initiated the investigation on the application of finite difference method (FDM) for solving FPDEs which can be 

seen in [6,7,8,9]. 

Motivated by the simplicity yet unconditional stable implicit scheme of FDM, which is observed from our 

brief literature review, we aim to discretize the space-fractional diffusion equation (SFDE) via the combination 
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of theimplicit method and Caputo’s fractional partial derivative of order  .It is worth to mention that many 

different iterative methods can be used to solve the linear system efficiently and accurately. Out of the existing 

linear system solvers, we notice that the preconditioned iterative methods [10,11,12,13] have the potential to be 

one of the numerical methods that are efficient in solving linear systems. Many researchers have applied 

preconditioning techniques in their numerical study. For instance, [14] used the preconditioning technique for 

eigenvalue-counts which eventually demonstrate the efficiency of the computation cost. Then, [15] proposed a 

circulant preconditioning technique to develop an efficient solution to the fractional diffusion equation. More 

details about the preconditioning technique for efficiently solving the linear system can be referred in [16]. This 

author mentioned that an excellent preconditioner to be used to improve the structure of a linear system should 

be the one that easy to solve and be less complex to be constructed and applied. 

 Brief literature made based on several preconditioning techniques inspires our research study 

and becomes the aim of this paper which is to show the formulationof the Caputo’s implicit finite 

difference approximation equation and then investigate on how effective ourproposed Full-Sweep 

Preconditioned AOR(FSPAOR) iterative method in solving SFDE. In our numerical investigation on 

the effectiveness of the FSPAOR method, we have implemented two iterative methods, namely the 

Full-Sweep Preconditioned SOR (FSPSOR) and Full-Sweep Preconditioned Gauss-Seidel (FSPGS) 

iterative methods. Here, the FSPGS acts as our control method for the numerical experiment.  

2. Finite Difference Approximation with Caputo’s operator 

To start the discretization for the SFDE via the combination of theimplicit scheme and Caputo’s 

space-fractional operator, let us consider the following general form of a parabolic fractional 

differential equation: 

                0tx,ptx,uxc
x

tx,u
xb

x

tx,u
xa

t

tx,u
 

















,  (1) 

From the main problem (1), SFDE can be obtained when   1xa  , while the other two,  xb and  xc  are 

set to be zeroes. We approximate the solution of problem (1) by subjecting Problem (1) with the initial 

condition    xfx,0u   for χx0  , and then the boundary condition with the left and right ends 

are denoted as    tgt0,u 0  and    tgt,u 1l , on time interval .t0  Also, we introduce some 

definitions that can be applied as follows. 
 

Definition 1. The fractional integral operator by Riemann-Liouville, 
J of order-   is defined as 

  




x

0

1 dt,tf)t-x(
)(

1
)x(fJ 


   (2)                                     

Definition 2.The fractional partial derivative operator by Caputo, 
D  of order -   is defined as 

   


x

0

1m

)m(

,dt
)t-x(

)t(f

)m(

1
xfD 




  (3) 

with the following properties: 

 ,constant a isk ,0D k 
 

 
 

 
 













  







nfor,x
1n

1n

nfor,0

xD n
n    

Where with m and n are natural numbers. By defining the fixed distance ,
k

h
l

 where k can be any integer that 

is positive and using the implicit scheme together with the definitions, the fractional space term in problem (1) 

can be formulated into 



ICERIA 2020
Journal of Physics: Conference Series 1803 (2021) 012004

IOP Publishing
doi:10.1088/1742-6596/1803/1/012004

3

 

 

 

 

 

 

      








 
nt

0

1

n2

i

2

ni sst
x

s,xu

)2(

1

x

t,xu 




  

 

  



 







 




1-i

0j

h1j

jh

2

n1,j-inj,-in1,j-i
ss-nh

h

UU2U

2

1 


 

=  
    β2β2

1-i

0j

n1,j-inj,-in1,j-i

-β

j1jU2UU
β3Γ

h 


 

  .  (4) 

Then, we let 

 




 


3

h -

h, , 

and  

   -22
j j1jg  

, 

so that equation (4) can be simplified into  

   


 


 1-i

0j

n1,j-inj,-in1,j-ijh,
ni UU2Ug

x

t,xu 




 .  (5) 

 Now, by substituting equation (5) back to problem (1) and discretized using the implicit scheme, 

we may able to approximate problem (1) by using the following equation: 

   



 

1i

0j

n1,j-inj,-in1,j-ijh,i1-ni,ni, UU2UgaUU 


 
0pUC

h2

UU-
b ni,ni,i

n1,in1,i

i 


 
,  (6)

 

for i=1, 2, …, m-1.  

The terms in the equation (6) can also be rearranged as 

 



 

1i

0j

n1,j-inj,-in1,j-ijh,ini, UU2UgaU 
   1-ni,ni,ni,in1,in1,i

i UpUCUU
2h

b
  , (7) 

Eventually, from equation (7) we get 

n1,i

*

ini,

*

in1,-i

*

i UbUcUb    *

i

1i

0j

n1,j-inj,-in1,j-ij pUU2Ug  





 i , (8)

 

where 

h,ia  i  ,  
2h

b
b i*

i   ,  i

*

i cc   ,  and     i1-ni,

*

i pUλp  . 

For  3n  , equation (8) can be rewritten into the form of 

in1,iini,in1,-ii2-iin3,-ii UsUrUqUυUτ l  , (9) 

where each term represents 

 



 

1i

0j
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β
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*
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β
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 .bαs *

iii   
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Using equation (9), we can construct a system of the linear equation that has the form of 

~~
UA l ,     (10) 

where 
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 ...UUUUq 23302122011
~

  llll Tmmm Us 11  l . 

 

3. FSPAOR Iteration 

In this section, we show the derivation of the Full-Sweep Preconditioned Accelerated Over Relaxation 

(FSPAOR) iterative method for the approximate solutions of the system of linear equation (10). The 

coefficient matrix A as in linear system (10) isa large scale and sparse. So, to derive the FSPAOR 

iterative method, we first find the preconditioned linear system to linear system (10) that has the form 

of 

~~

* fxA  ,     (11) 

with the following matrix transformations, 
T* PAPA  ,

~~
Pf l , and

~

T

~
xPU   .  

In this transformation, we defined matrix Pas our preconditioned matrix and the reference therein 

[9,12]. The matrix Pwith a dimension (M-1)×(M-1) that we use is 

SIP   

with the components I and S are 


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Now, using the preconditioned matrix (11) to formulate our FSPAOR iterative method, we let the 

coefficient matrix *A  in the preconditioned matrix (11) be expressed as 

VLDA *  .    (12) 

Based on the summation of three different matrices shown in (12), the matrices D, L and V that we use 

are the diagonal, the lower triangular and the upper triangular parts respectively. Hence, by combining 

equation (11) and (12), the FSPAOR iteration can be derived into the form of [12,7], 

             fLDUDLVLDU
kk 111 ~

1
~    , 

(13) 

where  1

~

k
x denotes the unknown vector at (k+1)th  iteration which is we try to compute efficiently. 

By referring to equation (13), we have two parameters to be adjusted in order to find the optimum 

convergence rate for the solution in problem (1). For practise, to choose these two parameters, at first, 

we let 1 and then implement the iteration cycle using equation (13) with different values of   

within the range (1, 2). The value of  is selected when the number of iterations reached the least 

number. Then, using the “optimum” value of , again, we implement the iteration cycle using 

equation (13) with different positive values of  . For more details about the real parameter of   and 

 , see in [16]. 

The way we implement the FSPAOR iteration in solving SFDE can be described as in Algorithm 1. 
Algorithm 1: FSPAOR iterative method 

i. Set the initial guess 0
~

U and 
10

10
 . 

 

ii. For 1,,2,1,0  nj K implement 

a. For 1,,2,1  mi K calculate formula (13) 

b. Check if      kk
UU

~

1

~

is satisfied, then 

go to next time level. 
iii Display output. 

4. Numerical Test 

This section shows the numerical result of the proposed FSPAOR using the examples of the SFDE. In 

this numerical test, we attempt to verify the effectiveness of the FSPAOR method together with the 

FSPGS and FSPSOR methods. For the comparison purpose, we observethe number iterations (k) and 

the execution time (seconds) between the three methods to see the performance in terms of efficiency. 

We also observe the magnitude of maximum error (error) among the three methods to make the 

solutions obtained are accurate. All comparison analysis are conducted at three different values

1.8 and5.1,2.1   . To run the experiment C++ program that we build based on algorithm 

1, we set the convergence stopping point at
1010 .Other than that, we choose the following space-

fractional initial boundary value problem (SFIBVP) for the numerical test. 

 

Example 1: 
Let us consider the following general SFIBVP: 

        ,0tx,f
x

tx,U
xa-

t

tx,U












 (14) 

with the specification as follows (Azizi& Loghmani, 2013) 

    0.5xΓ25.0xa  and        1t2xsin1tcos1xtx,f 2  . 

 

Example 2 [18]: 
Let us consider the following SFIBVP: 
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      0e1-2xx3
x

tx,U
x)2.1(

t

tx,U t-2 













,  

(15) 

       All numerical results for the tested SFIBVP (14) and (15) are recorded in Tables 1and 2. The three 

iterations (FSAOR, FSPGS and FSPSOR) are implemented on these SFIBVPs using a different value 

of mesh size. We use five different mesh values to see the consistency in terms of performance by the 

three iterations. 

5. Conclusion 

In conclusion, we have successfully formulated the Caputo’s approximation equation to SFDE that 

leads a large and sparse linear system. We apply the preconditioning technique to get the 

preconditioned linear system which eventually we use to derive our FSPAOR iterative method. After 

we test the FSAOR iterative method together with the FSPGS and FSPSOR iterative methods, we 

found that the FSPAOR method requires the least amount for the number of iterations and execution 

time among the three methods, particularly when 2.1 .The accuracy of all tested iterative methods 

is in a good agreement. 
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TABLE 1. Numerical result for example 1 
 

Mesh 

 

Method 8.1  5.1  2.1  

k seconds error k seconds error k seconds error 

128 

 

FSPGS 345 9.48 3.99e-02 104 2.83 6.20e-04 36 1.09 2.37e-02 

FSPSOR 246 5.76 3.99e-02 80 1.90 6.20e-04 34 0.84 2.37e-02 

FSPAOR 234 5.56 3.99e-02 77 1.84 6.20e-04 33 0.73 2.37e-02 

256 

 

FSPGS 1123 111.98 3.97e-02 272 27.00 5.69e-04 72 7.23 2.44e-02 

FSPSOR 806 67.75 3.97e-02 211 17.84 5.69e-04 67 5.33 2.44e-02 

FSPAOR 769 66.34 3.97e-02 204 17.51 5.69e-04 64 5.21 2.44e-02 

512 FSPGS 3659 1398.43 3.96e-02 723 276.20 5.36e-04 151 58.11 2.47e-02 

FSPSOR 2635 843.91 3.96e-02 566 182.83 5.36e-04 129 41.43 2.47e-02 

FSPAOR 2528 828.27 3.96e-02 548 177.13 5.36e-04 127 35.22 2.47e-02 

1024 FSPGS 11836 2138.11 3.95e-02 1935 945.20 5.13e-04 328 492.56 2.49e-02 

FSPSOR 11829 2099.87 3.95e-02 1514 898.29 5.13e-04 278 472.35 2.49e-02 

FSPAOR 11783 2081.94 3.95e-02 1469 873.87 5.13e-04 272 342.76 2.49e-02 

2048 FSPGS 47322 8979.18 3.93e-02 8320 4348.68 5.02e-04 1547 1227.21 2.50e-02 

FSPSOR 47289 8852.28 3.93e-02 4052 4299.73 5.02e-04 608 1219.76 2.50e-02 

FSPAOR 47253 8800.61 3.93e-02 4012 4274.43 5.02e-04 597 1195.59 2.50e-02 

 

TABLE 2. Numerical result for example 2 
 

Mesh 

 

Method 8.1  5.1  2.1  

k seconds error k seconds error k seconds error 

128 

 

FSPGS 213 5.27 8.88e-04 75 1.83 5.44e-02 27 0.72 1.80e-01 

FSPSOR 166 4.64 8.88e-04 62 1.66 5.44e-02 25 0.50 1.80e-01 

FSPAOR 147 4.18 8.88e-04 56 1.43 5.44e-02 24 0.36 1.80e-01 

256 

 

FSPGS 686 59.48 4.09e-04 197 17.11 5.58e-02 55 4.72 1.84e-01 

FSPSOR 542 51.40 4.09e-04 164 14.66 5.58e-02 48 2.88 1.84e-01 

FSPAOR 483 50.23 4.09e-04 150 12.41 5.58e-02 45 1.84 1.84e-01 

512 FSPGS 2213 737.50 1.54e-04 522 170.92 5.65e-02 116 37.86 1.86e-01 

FSPSOR 1756 694.62 1.54e-04 438 163.79 5.65e-02 102 30.90 1.86e-01 

FSPAOR 1569 645.68 1.54e-04 403 152.34 5.65e-02 97 27.94 1.86e-01 

1024 FSPGS 3452 820.62 1.49e-04 1435 443.81 5.69e-02 250 322.55 1.89e-01 

FSPSOR 2431 809.74 1.49e-04 1391 432.99 5.69e-02 222 310.79 1.89e-01 
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FSPAOR 2353 782.32 1.49e-04 1117 421.89 5.69e-02 210 284.91 1.89e-01 

2048 FSPGS 5127 3173.73 1.20e-04 4125 713.64 5.85e-02 518 413.21 1.88e-01 

FSPSOR 4914 3167.38 1.20e-04 4111 688.32 5.85e-02 498 395.90 1.88e-01 

FSPAOR 4854 3130.75 1.20e-04 4030 672.63 5.85e-02 470 383.87 1.88e-01 

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/349423794

