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Abstract: Research into the recent developments for solving fractional mathematical equations
requires accurate and efficient numerical methods. Although many numerical methods based on
Caputo’s fractional derivative have been proposed to solve fractional mathematical equations, the
efficiency of obtaining solutions using these methods when dealing with a large matrix requires
further study. The matrix size influences the accuracy of the solution. Therefore, this paper proposes
a quarter-sweep finite difference scheme with a preconditioned relaxation-based approximation
to efficiently solve a large matrix, which is based on the establishment of a linear system for a
fractional mathematical equation. The paper presents the formulation of the quarter-sweep finite
difference scheme that is used to approximate the selected fractional mathematical equation. Then,
the derivation of a preconditioned relaxation method based on a quarter-sweep scheme is discussed.
The design of a C++ algorithm of the proposed quarter-sweep preconditioned relaxation method is
shown and, finally, efficiency analysis comparing the proposed method with several tested methods
is presented. The contributions of this paper are the presentation of a new preconditioned matrix to
restructure the developed linear system, and the derivation of an efficient preconditioned relaxation
iterative method for solving a fractional mathematical equation. By simulating the solutions of time-
fractional diffusion problems with the proposed numerical method, the study found that computing
solutions using the quarter-sweep preconditioned relaxation method is more efficient than using
the tested methods. The proposed numerical method is able to solve the selected problems with
fewer iterations and a faster execution time than the tested existing methods. The efficiency of the
methods was evaluated using different matrix sizes. Thus, the combination of a quarter-sweep
finite difference method, Caputo’s time-fractional derivative, and the preconditioned successive
over-relaxation method showed good potential for solving different types of fractional mathematical
equations, and provides a future direction for this field of research.

Keywords: Caputo’s time-fractional derivative; finite difference scheme; iterative relaxation method;
time-fractional diffusion equation; preconditioned matrix

1. Introduction

Research into the recent developments for solving fractional mathematical equations
requires accurate and efficient numerical methods. The accuracy and efficiency of the
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numerical method used to solve a fractional mathematical equation determine the pre-
cision when interpreting the behaviours of physical phenomena. Accurate and efficient
methods enable researchers to explore and solve a greater number of complex fractional
mathematical models. Many numerical methods based on Caputo’s fractional derivative
have been proposed to approximate the solution of the modelled fractional mathematical
equations. For instance, ref. [1] proposed two numerical methods, the non-standard finite
difference method and the generalized Euler method, for solving a mathematical model of
drug resistance during treatment for human immunodeficiency virus, using the Caputo
approach. Subsequently, ref. [2] studied the conversion of an existing tobacco smoking
model into a fractional-order Caputo model, and used the combination of the fourth-order
Runge–Kutta and Adams–Bashforth–Moulton methods to solve the developed model.
In another article, ref. [3] developed a time–space fractional hyperbolic bioheat transfer
model for non-Fourier bioheat transfer in living biological tissues during laser irradiation
using Caputo’s definition. They applied an L1 finite difference approximation to Caputo’s
time-fractional derivative and a central difference approximation to Riesz’s space-fractional
derivative for the solution of the model. In addition, ref. [4] investigated Caputo’s fractional
Maxwell model of unsteady fluid flow and heat transfer of the natural convection of a
viscoelastic non-Newtonian fluid using a finite difference method.

Of the many existing numerical methods, the finite difference method, widely known
as FDM, is one of the most popular numerical methods used to solve fractional mathemati-
cal equations using the Caputo approach. From our review of several applications of FDM
to solve Caputo’s time-fractional mathematical equations, ref. [5] utilized the implicit FDM
to solve the time-fractional diffusion equation with a time-invariant type variable. Subse-
quently, ref. [6] developed a fourth-order FDM to solve a time-fractional diffusion equation
after transforming the fractional mathematical equation into a Volterra integro-differential
equation via a Laplace transform. In addition, ref. [7] proposed a weighted FDM to effec-
tively solve a system of variable-order time-fractional two-dimensional Burgers’ equations.
FDM can also be combined with spline approximation to solve the time-fractional stochas-
tic advection equation [8]. These studies are examples of the numerous works published
by global researchers. The abundance of related research in the literature has motivated nu-
merous researchers to propose more accurate and efficient numerical methods for solving
fractional mathematical equations.

In our view, the efficiency of numerical methods used to obtain the solution of a
fractional mathematical equation when dealing with a large matrix requires further study
because the accuracy of the solution is influenced by the matrix size. Therefore, this paper
proposes a quarter-sweep finite difference scheme with a preconditioned relaxation-based
approximation to efficiently solve a large matrix, which results from establishing a linear
system for a fractional mathematical equation. The quarter-sweep finite difference scheme
is suitable for solving a fractional mathematical equation because, among other reasons, the
derivation of the scheme is similar to that of an implicit FDM, which makes it compatible
with Caputo’s time-fractional approximation. The quarter-sweep scheme is derived by
modifying an implicit FDM by skipping three grid points for two consecutive unknown
grid points. The values of the unknown grid points can be computed using the iterative
method until they converge. Then, the remaining grid points resulting from the skipping
procedure are computed directly using the approximation function [9–11]. Moreover, due
to the combination of iterative and direct computation, the quarter-sweep scheme has a
lower computational burden compared to the implicit and high-order FDM. This paper
introduces a preconditioned relaxation method to improve the convergence rate of the
iterations, thereby resulting in a highly efficient numerical method. The contributions of
the paper are the presentation of a new preconditioned matrix to restructure the developed
linear system and the derivation of an efficient preconditioned relaxation iterative method
for solving a fractional mathematical equation.

To investigate the efficacy of this new numerical method, a well-known fractional
mathematical equation, namely, the fractional diffusion equation (FDE), was selected
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as a mathematical problem. FDE is a fractional mathematical equation that has been
successfully used in the mathematical modelling of physical phenomena. Due to the
limitation of the classic diffusion equation in the modelling of the anomalous diffusion
process, the theory and application of fractional diffusion have evolved. Hence, FDE has
been used to successfully model shipping water events [12], image denoising [13], dye-
sensitized solar cells [14], diffusion of soluble substances [15], groundwater pollution [16],
option pricing and risk calculation [17], and signal smoothing performance analysis [18].
A better understanding of FDE models can be achieved using an efficient numerical
method called the quarter-sweep preconditioned relaxation method. It should be noted
that this paper extends the works from [19] and [20], which implemented the standard
implicit FDM with preconditioned relaxation and the half-sweep difference scheme with
preconditioned relaxation, respectively, for solving the time FDE. The work in [19] showed
the improvement in the number of iterations and execution time after implementing a
preconditioned successive over-relaxation with implicit FDM using the Caputo approach
to solve the time FDE. Another article [20] applied a computational complexity reduction
technique called the half-sweep iteration to successfully reduce the computational cost
using preconditioned successive over-relaxation, and eventually improve the efficiency
of Caputo’s finite difference scheme. This paper extends these works by employing
the quarter-sweep FDM to reduce the computational cost of solving the FDE using a
preconditioned successive over-relaxation when dealing with a large matrix.

This paper is organized as follows: Section 2 presents Caputo’s fractional operator,
one of the important definitions in the fractional derivative theory. In Section 3, an ap-
proximation to a general time FDE is formulated using Caputo’s fractional operator and
the quarter-sweep numerical discretization procedure. Section 4 explains the stability
of the approximation to the considered mathematical equation. Section 5 discusses the
convergence of the quarter-sweep finite difference approximation in the Caputo sense. In
Section 6, the concept of preconditioned successive over-relaxation (PSOR) used to formu-
late the quarter-sweep PSOR (QSPSOR) iterative method is discussed. Section 7 shows the
implementation and application of an algorithm written in C++ programming language
for the numerical experiment and simulation with QSPSOR, and provides a comparison
with selected existing methods. Finally, a conclusion is given in Section 8.

2. Preliminary

Formulating a quarter-sweep approximation to a time FDE requires good knowledge
of fractional calculus theory and several useful operators. In the preliminary stage of this
paper, Caputo’s fractional operator is used to approximate the time-fractional derivative
term. The definition of Caputo’s derivative with a fractional order is as follows:

Definition 1 ([21]). Let m− 1 < α < m , where m is an element of the set of natural numbers,
and α is a real number, and a function f (x) such that Dα

0 f (x) exists. Caputo’s fractional operator
can be defined in the form of:

Dα
0 f (x) =

∫ x

0

f (m)(r)

(x− r)α−(m−1)
dr. (1)

Using Definition 1, a time-fractional derivative term in a differential equation can be
approximated by:

Dα
t z(x, t) =

1
Γ(1− α)

∫ t

0

∂z(x, τ)

∂t
(t− τ)−α dτ, (2)

where 0 < α < 1 and z(x, t) > 0.
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The next section discusses the formulation of a quarter-sweep finite difference ap-
proximation to the time FDE, which uses Equation (2) to approximate the time-fractional
derivative.

3. Mixed Caputo Fractional Operator and Quarter-Sweep Discretization Scheme

To demonstrate the formulation of the mixed Caputo fractional operator and quarter-
sweep discretization scheme, let us consider a well-known model of the time FDE, namely:

∂αz(x, t)
∂tα

= a(x)
∂2z(x, t)

∂x2 + b(x)
∂z(x, t)

∂x
+ c(x)z(x, t), (3)

where a(x), b(x), and c(x) are either predefined functions, constants, or mixed.
A suitable boundary condition must be imposed on Equation (3) before the solution

can be derived using an FDM. In this paper, a Dirichlet-type boundary condition is used to
construct a solution domain. Furthermore, the solution domain is restricted to the usual
finite domain 0 ≤ x ≤ γ because the aim of this paper is to investigate of the efficacy of a
new iterative method developed from the use of Equation (2) and a quarter-sweep FDM.
Based on Equation (3), Caputo’s fractional approximation to the fractional order in time is
illustrated as follows:

∂αz(xi, tn)

∂tα
=

1
Γ(1− α)

∫ tn

0

∂z(xi, τ)

∂t
(tn − τ)−α dτ. (4)

Equation (4) can be derived further and simplified to:

∂αz(xi, tn)

∂tα
=

1
Γ(1− α)(1− α)kα

n

∑
j=1

(
Zi,j − Zi,j−1

)[
(n− (j− 1))1−α − (n− j)1−α

]
+

1
Γ(1− α)(1− α)

n

∑
j=1

[
(n− (j− 1))1−α − (n− j)1−α

]
O
(

k2−α
)

.
(5)

Next, by defining:

σα,k =
1

Γ(1− α)(1− α)kα
, (6)

where k is a real number, and:

ωα,j = j1−α − (j− 1)1−α, (7)

a discrete approximation to the fractional order in time becomes:

∂αz(xi, tn)

∂tα
= σα,k

n

∑
j=0

ωα,j

(
Zi,n−(j−1) − Zi,n−j

)
+

1
Γ(1− α)(1− α)

n1−αO
(

k2−α
)

, (8)

and, finally:
∂αz(xi, tn)

∂tα
= σα,k

n

∑
j=0

ωα,j

(
Zi,n−(j−1) − Zi,n−j

)
+ O(k). (9)

To discretize the right-hand side part of Equation (3) using a quarter-sweep implicit
scheme of FDM, let the solution domain of the problem be partitioned uniformly. Let some
integers M > 0 and N > 0 denote the grid sizes in space and time, respectively. Similar
to the standard finite difference framework, we use h = γ/M and k = T/N, respectively.
Then, a uniform mesh of the solution can be formed using the distributed points in the
space [0, γ] as xi = ih, i = 1, 2, . . . , M − 1, and the distributed points in the time [0, T]
are labelled tn = nk, n = 1, 2, . . . , N. All of the unknown values of the solution function
z(xi, tn) located at these grid points are represented by Zi,n.
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Using Equation (9), in combination with a quarter-sweep implicit scheme, the quarter-
sweep Caputo fractional approximation of Equation (3) to the point centered at z(xi, tn) =
z(ih, nk) can be formulated and written as:

σα,k
n
∑

j=0
ωα,j

(
Zi,n−(j−1) − Zi,n−j

)
+ O(k)

= ai
16h2 (Zi−4,n − 2Zi,n + Zi+4,n) +

bi
8h (Zi+4,n − Zi−4,n) + ciZi,n + O

(
h2), (10)

where i = 4, 6 . . . , m− 4.
The approximation structure presented in Equation (10) is similar to a standard

implicit approximation equation, with the exception that the distance between any two
points is quadrupled. Equation (10) is also consistent with the first-order accuracy in time
and second-order accuracy in space. When Equation (10) is written in a particular form, for
instance, at time level n ≥ 2, one can obtain:

σα,k

n

∑
j=2

ωα,j

(
Zi,n−(j−1) − Zi,n−j

)
= a∗i Zi−4,n + b∗i Zi,n + c∗i Zi+4,n, (11)

where:
a∗i =

ai
16h2 −

bi
8h

, b∗i = ci −
ai

8h2 , c∗i =
ai

16h2 +
bi
8h

. (12)

Moreover, for n = 1, one can obtain:

Fi,1 = −a∗i Zi−4,1 + b∗∗i Zi,1 − c∗i Zi+4,1, (13)

where:
b∗∗i = σα,k − b∗i , Fi,1 = σα,kZi,0. (14)

Furthermore, using Equation (14), a corresponding linear system can be constructed
properly in the form of a matrix as:

AZ̃ = F̃, (15)

where:

A =



b∗∗4 −c∗4
−a∗8 b∗∗8 −c∗8

−a∗12
b∗∗12
. . .

−c∗12
. . .

−a∗M−8

. . .
b∗∗M−8
−a∗M−4

−c∗M−8
b∗∗M−4


, (16)

Z̃ = [Z4,1, Z8,1, Z12,1, . . . , ZM−8,1, ZM−4,1]
T , (17)

and:
F̃ =

[
F4,1 + a∗4 F0,1, F8,1, F12,1, . . . , FM−8,1, FM−4,1 + c∗M−4FM,1

]T . (18)

4. Stability of Caputo’s Fractional Approximation with a Quarter-Sweep Scheme

This section discusses the stability analysis of the quarter-sweep Caputo fractional
approximation to the time FDE as shown in Equation (3). In this paper, two common stabil-
ity verification approaches are applied: Von Neumann’s method and the Lax equivalence
theorem. The developed theorem for the stability of the quarter-sweep Caputo fractional
approximation is presented below.

Theorem 1. The quarter-sweep implicit approximation with Caputo’s fractional operator for
0 < α < 1, on the finite space 0 ≤ x ≤ 1 and all t > 0, is unconditionally stable.
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Proof of Theorem 1. Suppose that a solution function of Equation (3) has the form:

Zi,n = ξneI(λih), (19)

where I =
√
−1 and λ is a real number. Using Equation (19), the quarter-sweep Caputo

fractional approximation shown by Equation (11) can be rewritten as:

σα,k

n

∑
j=2

ωα,j

(
ξn−(j−1)e

I(λih) − ξn−jeI(λih)
)
= a∗i ξneI(λ(i−4)h) + b∗i ξneI(λih) + c∗i ξneI(λ(i+4)h). (20)

Equation (20) can be transformed into:

−σα,kξn−1eI(λih) + σα,k

n

∑
j=2

ωα,j

(
ξn−(j−1)e

I(λih) − ξn−jeI(λih)
)
=

a∗i ξneI(λ(i−4)h) + (b∗i − σα,k)ξneI(λih) + c∗i ξneI(λ(i+4)h).

(21)

By simplifying and rearranging the distinct terms in Equation (21), one can obtain:

− σα,kξn−1 + σα,k

n

∑
j=2

ωα,j

(
ξn−(j−1) − ξn−j

)
= ξn(((a∗i + c∗i ) cos 4λh) + (b∗i − σα,k)), (22)

which can be reduced to:

ξn =
ξn−1 + ∑n

j=2 ωα,j

(
ξn−j − ξn−(j−1)

)
(

1− (a∗i +c∗i ) cos 4λh+b∗i
σα,k

) . (23)

From Equation (23), for all values of j, n, ω, α, λ, h, σ, and k, it follows that:

ξ1 ≤ ξ0, (24)

and when n = 2, we have:
ξ2 ≤ ξ1 + ωα,2(ξ0 − ξ1), (25)

which can generally be stated as:

ξn ≤ ξn−1 +
n

∑
j=2

ωα,j

(
ξn−j − ξn−(j−1)

)
, n ≥ 2. (26)

Since:

ξn ≤ ξn−1 +
n

∑
j=2

ωα,j

(
ξn−j − ξn−(j−1)

)
≤ ξn−j, (27)

the inequalities in Equations (24)–(26) imply:

ξn ≤ ξn−1 ≤ ξn−2 ≤ · · · ≤ ξ1 ≤ ξ0. (28)

Thus, the stability of the quarter-sweep scheme via Caputo’s time-fractional operator
is established as:

ξn = |Zi,n| ≤ ξ0 = |Zi,0|. (29)

�

5. Convergence of Caputo’s Fractional Approximation with a Quarter-Sweep Scheme

This section discusses the convergence analysis of the quarter-sweep Caputo fractional
approximation to the time FDE in Equation (3). To begin the analysis, we define ei,n =
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z(xi, tn) − Zi,n, i = 1, 2, . . . , M − 1, n = 1, 2, . . . , N, where zi,n and Zi,n are the exact and
approximate solutions, respectively. Substitution of ei,n into Equations (11) and (13) gives:

σα,k

n

∑
j=2

ωα,j

(
ei,n−(j−1) − ei,n−j

)
= a∗i ei−4,n + b∗i ei,n + c∗i ei+4,n + Ri,n, n ≥ 2, (30)

where:

Ri,n = σα,k

n

∑
j=2

ωα,j

(
z
(

xi, tn−(j−1)

)
− z
(
xi, tn−j

))
− a∗i z(xi−4, tn)− b∗i z(xi, tn)− c∗i z(xi+4, tn), (31)

and:
σα,kei,0 = −a∗i ei−4,1 + (σα,k − b∗i )ei,1 − c∗i ei+4,1 + Ri,1. (32)

Then, we have:

∂αz(xi, tn)

∂tα
+ C1k = σα,k

n

∑
j=0

ωα,j

(
z
(

xi, tn−(j−1)

)
− z
(
xi, tn−j

))
, (33)

and the quarter-sweep first and second-order central difference operators as follows:

∂2z(xi, tn)

∂x2 + C2h2 =
z(xi−4, tn)− 2z(xi, tn) + z(xi+4, tn)

16h2 , (34)

and:
∂z(xi, tn)

∂x
+ C3h =

z(xi−4, tn)− z(xi+4, tn)

8h
. (35)

Hence:

Ri,n =
1

σα,k

[
∂αz(xi, tn)

∂tα
− a(x)

∂2z(xi, tn)

∂x2 − b(x)
∂z(xi, tn)

∂x
− c(x)z(xi, tn)

]
+ C1k1+α + kα

(
C2h2 + C3h

)
, (36)

and also:

|Ri,n| ≤ C
(

k1+α + kα
(

h2 + h
))

, i = 1, 2, . . . M− 1, n = 1, 2, . . . , N, (37)

where C is an arbitrary constant.
Because kn ≤ N is finite, we obtain the following theorem.

Theorem 2. Let Zi,n be the approximation of the exact value z(xi, tn), computed by the quarter-
sweep implicit approximation with Caputo’s fractional operator. Then, there is a positive constant C
such that:

|z(xi, tn)− Zi,n| ≤ C
(

k + h2
)

, i = 1, 2, . . . M− 1, n = 1, 2, . . . , N. (38)

6. Concept and Formulation of Quarter-Sweep Preconditioned Relaxation Method

The presented PSOR iterative method is a continuation of the derivation of the quarter-
sweep finite difference approximation via Caputo’s fractional derivative. The formulation
of the PSOR method begins with the linear system, as shown by Equation (15). The coeffi-
cient matrix considered in Equation (15) has a large scale and is sparse. Thus, the proposed
PSOR iterative method solves Equation (15) using the following matrix restructure. Firstly,
a preconditioned linear system can be defined as:

A′Z̃ = F̃′, (39)
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where the new matrices A′ = PAPT , F̃′ = PF̃, and Z̃ = PTψ. The preconditioned matrix
labelled P that is used in this paper is given by:

P = I + S, (40)

where:

S =



0 −r1 0 0 0 0
0 0 −r2 0 0 0
0 0 0 −r3 0 0

0 0
. . . . . . . . . 0

0 0 0 0 0 −rm−1
0 0 0 0 0 0


. (41)

Secondly, let us consider that the new coefficient matrix A′ in Equation (39) can be
defined as the summation of the matrix components of:

A′ = Di− Lo−Va, (42)

where Di, Lo, and Va are diagonal, lower triangular, and upper triangular matrices, respec-
tively. By combining Equations (39) and (42), the resultant QSPSOR iteration method can
be derived as:

ψ(η+1) = (Di−ωLo)−1((1−ω)Di + ωVa)ψ(η) + (Di−ωLo)−1 F̃′, (43)

where ψ(η+1) represents an unknown vector at the (η + 1)th iteration. The algorithm of
the QSPSOR method used to compute the solution of the time FDE is described in the
following Table 1.

Table 1. QSPSOR computational algorithm.

Set ψ(0) = 0 and the Tolerance Error ε = 10−10.

(i) For n = 1, 2, . . . , N and for i = 4, 8, . . . , M− 4, iterate the formula shown in Equation (43),
(ii) Compute Z̃(η+1) = PTψ(η+1),
(iii) Convergence criterion ‖Z̃(η+1) − Z̃(η)‖∞ < ε,
(iv) If the criterion is achieved, display approximate solutions.

7. Implementation and Application of C++ for Numerical Experiment

In this work, the C++ programming language was applied to implement the designed
QSPSOR computational algorithm. C++ is a high-level programming language used in
the field of numerical analysis. The C++ language also facilitates low-level coding because
it is an extension of the medium-level programming language, C. Because C++ has all of
the features and advantages of C, C++ enables the manipulation of low-level memory and
the development of numerical iterative formulas to solve mathematical problems. In this
work, the C++ simulation code was written to prioritize performance, speed, efficiency,
and flexibility of use. Hence, implementing the quarter-sweep approximation based on
Caputo’s fractional operator via the QSPSOR C++ code can yield important data, such as
the number of iterations, execution time, and absolute errors.

For the numerical experiment, two problems of the time-fractional diffusion equation
were selected to test the performance of the QSPSOR. For the efficiency comparison and
analysis, two existing methods from our previous work were used, abbreviated as FSP-
SOR [19] and HSPSOR [20]. To compare the performance of these methods, three criteria
were considered, namely, η—representing the number of iterations, sec.—representing the
execution time of the C++ simulation code, and ε̂—representing the magnitude of the abso-
lute error. The three criteria for comparison and efficiency analysis were observed and taken
based on three different values of fractional order, namely, α = 0.25, α = 0.50, and α = 0.75.



Fractal Fract. 2021, 5, 98 9 of 14

Moreover, the simulation considered five different grid points, M = 128, 256, 512, 1024,
and 2048. The problems are considered below.

Example 1 ([22]). Let the time-fractional initial boundary value problem be:

∂αz(x, t)
∂tα

=
∂2z(x, t)

∂x2 , 0< α ≤ 1, 0 ≤ x ≤ γ, t >0, (44)

where the boundary conditions are stated in fractional terms:

z(0, t) =
2ktα

Γ(α + 1)
, z(γ, t) = γ2 +

2ktα

Γ(α + 1)
, (45)

and the initial condition is:
z(x, 0) = x2. (46)

The analytical solution of Equation (44) is given by:

z(x, t) = x2 +
2ktα

Γ(α + 1)
. (47)

Example 2 ([22]). Let the next time-fractional initial boundary value problem be given as:

∂αz(x, t)
∂tα

=
1
2

x2 ∂2z(x, t)
∂x2 , 0< α ≤ 1, 0 ≤ x ≤ γ, t >0, (48)

where the boundary conditions are given in fractional terms:

z(0, t) = 0, z(1, t) = et, (49)

and the initial condition is given by:
z(x, 0) = x2. (50)

The exact solution of Equation (38) is:

z(x, t) = x2et. (51)

The collected numerical results of the implementation of FSPSOR, HSPSOR, and
QSPSOR to solve Examples 1 and 2 are recorded in Tables 2 and 3, respectively. Based on
Tables 2 and 3, it can be observed that the QSPSOR method requires fewer iterations to
obtain satisfactorily accurate approximate solutions of Examples 1 and 2. This significant
improvement in the number of iterations results in a shorter execution time, which indicates
QSPSOR can more efficiently solve Examples 1 and 2 than the two tested methods. The
accuracy of the solution obtained by the QSPSOR method is comparable and almost
equivalent to those of the FSPSOR and HSPSOR methods. A comparison of the different
fractional orders of the selected examples shows that the accuracy of the solutions of the
three numerical methods, which are based on the implicit finite difference scheme and
Caputo’s time-fractional approximation, is greatest at α = 0.50, followed by α = 0.75
and α = 0.25. Although the QSPSOR method can solve the selected problems efficiently,
the magnitude of the absolute errors of the solutions is slightly bigger than those of
the FSPSOR and HSPSOR methods. Thus, the use of the quarter-sweep scheme as the
complexity reduction approach for solving time-fractional behavior is a disadvantage due
to the less effective direct computation of the remaining points. Future work will further
investigate the appropriate treatment to reduce the absolute errors of the quarter-sweep
difference scheme in the Caputo sense.
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Table 2. Comparison between FSPSOR, HSPSOR, and QSPSOR in solving Example 1.

M Method
α = 0.25 α = 0.50 α = 0.75

η sec. ε̂ η sec. ε̂ η sec. ε̂

128
FSPSOR 28 0.84 2.36 × 102 80 1.90 6.20 × 104 246 5.76 3.99 × 102

HSPSOR 16 0.18 2.36 × 102 37 0.54 6.99 × 104 94 2.36 3.99 × 102

QSPSOR 8 0.05 2.37 × 102 14 0.29 6.19 × 104 32 0.09 4.21 × 102

256
FSPSOR 53 5.33 2.43 × 102 211 17.84 5.69 × 104 806 67.75 3.97 × 102

HSPSOR 34 2.20 2.43 × 102 94 6.90 6.21 × 104 303 34.65 3.97 × 102

QSPSOR 15 0.27 2.44 × 102 39 2.37 6.99 × 104 101 12.84 4.03 × 102

512
FSPSOR 120 41.43 2.46 × 102 566 182.83 5.36 × 104 2635 843.91 3.96 × 102

HSPSOR 67 21.65 2.46 × 102 246 86.09 5.36 × 104 988 421.58 3.96 × 102

QSPSOR 31 5.04 2.47 × 102 100 40.61 6.21 × 104 337 198.20 3.96 × 102

1024
FSPSOR 250 372.35 2.48 × 102 1514 726.29 5.13 × 104 6012 1699.87 3.95 × 102

HSPSOR 141 189.58 2.48 × 102 655 434.72 5.13 × 104 2413 1003.78 3.95 × 102

QSPSOR 66 47.29 2.49 × 102 266 214.51 5.69 × 104 1095 501.76 3.95 × 102

2048
FSPSOR 808 901.76 2.49 × 102 4052 3469.73 5.13 × 104 35,289 7052.28 3.93 × 102

HSPSOR 305 308.80 2.49 × 102 1788 1956.43 5.13 × 104 18,143 4025.90 3.93 × 102

QSPSOR 143 95.25 2.50 × 102 709 365.43 5.35 × 104 3574 2000.83 3.93 × 102

Table 3. Comparison between FSPSOR, HSPSOR, and QSPSOR in solving Example 2.

M Method
α = 0.25 α = 0.50 α = 0.75

η sec. ε̂ η sec. ε̂ η sec. ε̂

128
FSPSOR 28 0.84 2.36 × 102 80 1.90 6.20 × 104 246 5.76 3.99 × 102

HSPSOR 16 0.18 2.36 × 102 37 0.54 6.99 × 104 94 2.36 3.99 × 102

QSPSOR 8 0.05 2.37 × 102 14 0.29 6.19 × 104 32 0.09 4.21 × 102

256
FSPSOR 53 5.33 2.43 × 102 211 17.84 5.69 × 104 806 67.75 3.97 × 102

HSPSOR 34 2.20 2.43 × 102 94 6.90 6.21 × 104 303 34.65 3.97 × 102

QSPSOR 15 0.27 2.44 × 102 39 2.37 6.99 × 104 101 12.84 4.03 × 102

512
FSPSOR 120 41.43 2.46 × 102 566 182.83 5.36 × 104 2635 843.91 3.96 × 102

HSPSOR 67 21.65 2.46 × 102 246 86.09 5.36 × 104 988 421.58 3.96 × 102

QSPSOR 31 5.04 2.47 × 102 100 40.61 6.21 × 104 337 198.20 3.96 × 102

1024
FSPSOR 250 372.35 2.48 × 102 1514 726.29 5.13 × 104 6012 1699.87 3.95 × 102

HSPSOR 141 189.58 2.48 × 102 655 434.72 5.13 × 104 2413 1003.78 3.95 × 102

QSPSOR 66 47.29 2.49 × 102 266 214.51 5.69 × 104 1095 501.76 3.95 × 102

2048
FSPSOR 808 901.76 2.49 × 102 4052 3469.73 5.13 × 104 35,289 7052.28 3.93 × 102

HSPSOR 305 308.80 2.49 × 102 1788 1956.43 5.13 × 104 18,143 4025.90 3.93 × 102

QSPSOR 143 95.25 2.50 × 102 709 365.43 5.35 × 104 3574 2000.83 3.93 × 102

In addition, Figures 1–4 show the performance graphs of the number of iterations
and the execution time of the three methods. These graphs provide illustrations of the
differences in terms of the efficiency of the combination of Caputo’s time-fractional approx-
imation and preconditioned iterations via three different schemes: the standard implicit,
half-sweep, and quarter-sweep. The percentage improvement in terms of the number
of iterations for the proposed QSPSOR method, at α = 0.25, indicated that the number
of iterations declined significantly, by 74.64% and 53.18%, compared to the FSPSOR and
HSPSOR methods, respectively. Similarly, for execution time, the QSPSOR method was
significantly faster, by 90.71% and 76.18%, than the FSPSOR and HSPSOR methods, respec-
tively. At α = 0.50, the number of iterations needed by QSPSOR was 82.26% and 59.95%
less than that required by the FSPSOR and HSPSOR methods, respectively. As a result, the
C++ program execution time was 81.83% and 59.35% faster than that of the FSPSOR and
HSPSOR methods, respectively. Finally, for the fractional-order α = 0.75, QSPSOR required
86.67% and 66.69% fewer iterations than the FSPSOR and HSPSOR methods, respectively,
and the C++ program execution was 79.62% and 62.49% quicker than that of the FSPSOR
and HSPSOR methods, respectively.
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8. Conclusions

This paper discusses and presents the numerical solution of a fractional mathematical
equation, namely, the time FDE, using a quarter-sweep mixed Caputo time-fractional
approximation, and a C++ program to implement the QSPSOR iterative method. A precon-
ditioned matrix was successfully implemented to modify the matrix structure to improve
the convergence rate, and the QSPSOR method was formulated to efficiently solve the
matrix. A numerical experiment using two alternative methods, namely FSPSOR and HSP-
SOR, showed the superiority of the proposed QSPSOR method in terms of the efficiency of
solving two time-fractional initial boundary value problems of the diffusion equation. The
findings of this paper can be highlighted as follows:

• The QSPSOR method significantly reduced the number of iterations and execution
time compared to the existing FSPSOR and HSPSOR methods. On average, QSPSOR
reduced the number of iterations and execution time by 81.19% and 84.06%, respec-
tively, compared to FSPSOR. Moreover, QSPSOR reduced the number of iterations and
execution time compared to HSPSOR by 59.94% and 66.00%, respectively. The result
also showed that using the quarter-sweep scheme and PSOR iteration can reduce the
computational complexity for solving the time FDE with a large matrix size.

• Observations regarding the accuracy of all of the implemented numerical methods
indicated that their numerical solutions were in good agreement. Furthermore, the
accuracy of the solutions of the time-FDE problems obtained by each of the three
numerical methods was greater at α = 0.50, followed by α = 0.75 and α = 0.25. The
combination of the quarter-sweep implicit finite difference scheme and Caputo’s time-
fractional derivative enabled an accurate solution for the time FDE to be computed.

• However, a disadvantage of the quarter-sweep difference scheme is that the magni-
tude of the absolute errors is slightly larger than that of the two previous methods.
The accuracy of the quarter-sweep scheme can be improved by applying a suitable
treatment.

Thus, the combination of a quarter-sweep finite difference method, Caputo’s time-
fractional derivative, and the preconditioned successive over-relaxation method showed
good potential to solve different types of fractional mathematical equations, and provides
a future direction for this field of research.
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