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Abstract  
 
This research examines the performance of the application Half-Sweep Preconditioned SOR (HSPSOR) method 
together with an unconditionally implicit Caputo’s time–fractional finite difference approximation equation for 
solving time-fractional partial diffusion equations (TFPDE’s). To do it, the implicit Caputo’s time-fractional 
approximation equations and preconditioned matrix are used to construct the corresponding preconditioned linear 
system. In addition to that, formulation and application the HSPSOR method are also presented. Based on numerical 
results of the proposed iterative method, it can be concluded that  the proposed iterative method is superior to the 
Full-Sweep PSOR iterative methods. 
 
 
Keywords :HSPSOR, Implicit Finite Different, Caputo’S, Time-Fractional 
 
 
1.Introduction 
Based on previous studies in (Dey, 1999; Diethelm & Freed, 1999; Gorenflo & Mainardi, 1997; Sene & Fall, 2019; 
Tam, Wei, & Jin, 2005) many model in mathematical use fractional partial differential equations (FPDEs) to solve 
fractional problems such as time-fractional partial diffusion equations (TFPDE’s). Following to that, there are 
several methods used to solve these models. For instance, we have transform method (Sene & Fall, 2019), which is 
used to obtain analytical and/or numerical solutions of the fractional diffusion equations (FDE’s). Other than this 
method, other researchers have proposed finite difference methods such as explicit and implicit (Chaves, 1998; 
Evans & Haghighlt, 1984; Kepczynska, 2005). Also it is pointed out that the explicit iterative methods are 
conditionally stable. Therefore, to solve the problems of the TFPDE’s needs to be discretized. By using the implicit 
finite difference scheme and Caputo fractional operator, a linear system at each time level can be construct through 
the approximation equations. Therefore, Due to the matrix properties of the linear system, iterative methods are the 
alternative option for efficient solutions 
As far as  iterative methods are concerned,  it can be observed that many researchers such as (Cheng, Huang, & 
Cheng, 2006; Hackbusch, 2016; Young, 1971) then (Saad, 2003) have proposed and discussed several families of 
iterative methods. Among the existing proposed methods, the preconditioned iterative methods (Gunawardena, Jain, 
& Snyder, 1991; Salkuyeh & Shamsi, 2012; Shen, Zong, & Shao, 2009) have been widely accepted to be one of the 
efficient methods for solving  linear systems.  
Because of the advantages of these iterative methods, the aim of this study is to develop and application the 
performance of the HSPSOR method to solve  (TFPDE’s) based on the  implicit Caputos’s time-fractional finite 
difference approximation equation. To application the performance of the HSPSOR, we also applying Full-Sweep 
Preconditioned SOR (FSPSOR). 
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To demonstrate the performance of HSPSOR, let TFPDE’s be given as 
( ) ( ) ( ) ( ) ( ) ( ) ( )ryyc

y
ryyb

y
ryyary ,,,,

2

2
Ζ+

∂
Ζ∂

+
∂
Ζ∂

=
∂
Ζ∂
α

α
                                                                                  (1) 

where a(y), b(y) and c(y) are clear functions or fixed, whereas the parameter α refers to the fractional order TFPDE’s 
derivative.  
 
2.Preliminaries 
Previous to construct the discrete equation of Eq (1), in this section given some definitions can be applied  for  
fractional derivative theory  
 
Definition 1.(Sunarto, 2014; Young, 1971) The Riemann-Liouville operator is defined as 

( ) ( ) ( )∫ −
Γ

=
x

drrfryyfJ
0

1)( αα

α
, 0>α , 0>y                                                                                               (2)                                    

 
Definition 2. (Sunarto, 2014; Young, 1971) The Caputo’s operator is defined as 

( )
( )( )
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1 ,1)( α
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                           with ,1 mm ≤<− α m∈N, 0>y  
  
To obtain the numerical solution of Eq. (1) with Dirichlet boundary conditions, we get numerical approximations by 
using the Caputo’s derivative definition  and consider the non-local fractional TFPDE’s derivative operator. This 
approximation equation can be categorized as unconditionally stable scheme. On strength of Problem (1), the 
solution domain of the problem has been restricted to the finite space domain γ≤≤ y0 and 10 <<α , whereas α  
refers to the fractional order of TFPDE’s derivative. 
 
In addition to that, consider  Initial and boundary (conditions) of Eq (1) be given as  

( ) ( ),0, yfx =Ζ and ( ),),0( 0 rgr =Ζ  ( ) ( ),, 1 rgr =Ζ l  with ( ) ( ),, 10 rgrg and ( ),yf  
are given clear functions.  
A discretize approximation to TFPDE’s Eq. (1) by using Caputo’s order-α , is given as [9,11] 
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3.Approximation For Fractional Diffusion Equations 
 
Before constructing the Half-Sweep Caputo’s implicit approximation equation, let the Caputo’s fractional partial 
derivative in Eq.(4) be rewritten  as  

( )( )∑
=

−+− −≅
n

j
jnijnijknit UUUD

1
,1,,,

α
α

α ωσ                                                                                                                      

(5)                                                             
and we have the following expressions  

( )( ) αα αα
σ

kk
−−Γ

=
11
1

,  

and   
( ) ( ) .1 11 αααω −− −−= jjj  

 
To facilitate us in discretizing the fractional Eq. (1) via the implicit finite difference discretization scheme,  Firstly, 
its the solution domain of the fractional problem is divided uniformly into several subintervals. To do this, we 
consider several positive integers m and n in which the sizes of subinterval over space and time directions are stated 
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as  
m

xh 0−
=∆=
γ  and 

n
Ttk =∆=  respectively. According to these sizes of subinterval, we develop the uniformly 

finite grid network in the solution domain where the grid points over the space interval [ ]γ,0 and time interval [ ]T,0   
are denoted ,ihxi = mi ,...,2,1,0= and ,jkt j = nj ,...,2,1,0=  respectively.  Then approximate values of the 

function ( )txU ,  at the grid points are labeled as ( )jiji txUU ,, = . By considering Eq. (5) and the Half-Sweep implicit 
finite difference discretization scheme, the Half-Sweep Caputo’s implicit approximation equation of fractional Eq 
(1) to the reference grid point at ( ) ( )jkihtx ji ,, =  is can be shown as 
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for i=2,4,...,m-2. Actually, the approximation equation  (6) is also categories as one of family of fully implicit finite 
difference approximation equations. Also this equation is first order accuracy in time direction and second order in 
space direction. For simplicity, consider the Half-Sweep approximation equation (6) be rewritten at the specified 
time level. For instance, we have for 2≥n  :   
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where  
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ασ 1,,1, iki Uf ασ= .  

 
Referring to Eq. (8), we can get the tridiagonal linear system that  can be constructed in matrix form as     
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fUA =                                                                                                                                                                  (9) 
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4.Analysis Of Stability 
 
In this section, we have considered the stability analysis of the implicit finite difference approximation equation in 
Eq.(1). For stability analysis, we will use Von-Neumann’s theorem (Langlands & Henry, 2005) and the Lax 
equivalence theorem (I., Richtmyer, & Morton, 1968). It follows that the numerical solution of the approximation 
equation in Eq.(1) converges to the exact solution as .0, →kh  
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Theorem 4.1. 
The fully implicit numerical method  Eq.(1), the solution to Eq.(1) with 10 <<α on the finite domain 10 ≤≤ x , with 
zero boundary condition ( ) ( ) 0,,0 == tUtU l  for all ,0≥t is consistent and unconditionally stable. 
 
Proof. To examine the stability of the proposed method, we findfor solution of the form ωξ ω ,1, −== ieU jhi

n
n
j

real. Therefore Eq. (1) becomes 
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by simplifying and reordering over Eq.(10), we have : 
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 From Eq.(11), it can be observed that the conducted as  
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Thus, for  n=2, the last inequality implies  
 
    ( )( )10212 ξξωξξ α −+≤  
Again repeating the above process, we can get     
    ,1−≤ jj ξξ   j=1,2,…n-1. 
From Eq.(13), we finally have  

     ( )( ) .
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Since each term in the summation is negative, it shows that the inequalities Eq.(12) and Eq.(13) imply   
 
    .... 0121 ξξξξξ ≤≤≤≤≤ −− nnn  
Thus, 
    ,0

0 jj
n
jn fUU ==≤= ξξ which entails ,j

n
j fU ≤ and we have stability. 

       
5.Half-Sweep Preconditioned SOR Method 
In relation to the linear system in Equation (8), it is clear that the characteristics of its coefficient matrix are large 
scale and sparse. Basically in first Section, many scientist have discussed various iteration methods such as 
(Gunawardena et al., 1991; Hackbusch, 2016; Saad, 2003; Salkuyeh & Shamsi, 2012; Young, 1971). To get  
numerical solving of the tridiagonal linear system (8), we proposed the Half-Sweep Preconditioned Successive Over 
Relaxation (HSPSOR) iteration method (Shen et al., 2009; Sunarto, Sulaiman, & Saudi, 2015), to solve any linear 
systems. 
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Before applying the HSPSOR iteration method, we need to transform the original linear system (9) into the 
preconditioned linear system 

~

*
~

* fA =Ζ                                                                                                                  (14) 

where,  TPAPA =* ,
~~

* fPf = ,
~~
yPT=Ζ  .  

Actually, the matrix P is called a preconditioned matrix and defined as (Gunawardena et al., 1991; Sunarto et al., 
2015) 
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and the matrix I is an identical matrix. To develop Half-Sweep PSOR iteration method, let consider the coefficient 

matrix *A  in equation (9) can be defined as summation of the matrices 

    VaLoDiA −−=*                                                                          (16)                      
with Di, Lo and Va are diagonal, lower triangular and upper triangular matrices. By using Eq.(14) and (16) , the 
formulation of Half-Sweep PSOR  iteration method can be rewritten as (Shen et al., 2009; Sunarto et al., 2015) 
             ( ) ( ) ( )[ ] ( ) ( ) *

~

1

~

11

~
1 fLDyVDLDy kk −−+ −++−−= ωωωω                                                                                                 (17)                            

where ( )1

~

+ky represents ankunknown vectorkat (k+1)th iteration. The application of the HSPSOR iteration method 

can be explained in this below. 
HSPSOR method 
i. First 0~

←U and 1010−←ε .  
ii. Then nj ,,2,1 K=  Implement 

a.  with 121 −= m,,,i K calculate 
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                 ( ) ( )1
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b. Next to the convergence test. If the convergence criterion i.e ( ) ( ) 10

~

1

~
10−+ =≤− εkk yy is satisfied, 

go to Step (iii). If not go back to Step (a). 
iii Display approximate  equation  solutions. 
 
6.Evolution Of Numerical Problems 
By using approximation Eq. ( )7 , we consider one problem of the TFPDE’s to test the performance of the Fulll-
Sweep Preconditioned Successive Over-Relaxation (FSPSOR) and Half-Sweep Preconditioned Successive Over-
Relaxation (HSPSOR) iteration methods. In order to compare the performance of these proposed iteration methods, 
three criteria have been considered such as K (number of iterations),  Time (in seconds) and Max Absolute Error at 
three values, where value of α = 0.25, α = 0.50 and α = 0.75. For application of three iterative schemes, the 
convergence test considered the tolerance error as ε = 1010− .   

Let us examine the TFPDE’s initial boundary conditions value problem (Ali, S E, Ozgur & Korkmaz, 
2013) 

 ( ) ( ) 0,0,10,,,
2

2
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∂
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Ζ∂ ry
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ry
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,                                                                                 (18) 

with the boundary value conditions are ( ) ( ) ,
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and the initial value condition ( ) 20, yy =Ζ .                                                                                                                (20)  
Overall results of evolution of numerical problem for equation (18), obtained from application of 

FSPSOR and HSPSOR iteration methods are recorded in Table 1, where value of mesh sizes, m = 128, 256, 512, 
1024, and 2048. 
 
7.Conclusions 
To In order to get the numerical solution of the TFPDE’s problems equation, this study give the derivation of the 
implicit Caputo’s finite difference approximation equations in which this approximation equation leads a tridiagonal 
linear system. Via all experimental results by imposing the FSPSOR and HSPSOR iteration methods, it is clear at 

250.=α that K (number of iterations) have declined approximately by 64.27-96.14% conforms to the HSPSOR 
iteration method compared with FSPSOR methods. Then for Time, application of HSPSOR iteration method are 
much faster about 25.84-94.18% than the FSPSOR methods. It can be also observed in Table 1 that the HSPSOR 
method requires the least amount for K (number of iterations) and Time at 250.=α  as compared with FSPSOR 
iteration methods. According to the accuracy of both iteration methods, it can be concluded that their numerical 
solutions of TFPDE’s are in good agreement.  
 
References 
Ali, S E, Ozgur, B., & Korkmaz, E. (2013). Analysis Of Fractional Partial Differential Equations By Taylor Series 

Expansion. Boundary Value Problem, A Springer Open, 68. 
Chaves, A. S. (1998). A fractional diffusion equation to describe Lévy flights. Physics Letters A, 239(1–2), 13–16. 

https://doi.org/10.1016/s0375-9601(97)00947-x 
Cheng, G. H., Huang, T. Z., & Cheng, X. Y. (2006). Preconditioned Gauss-Seidel type iterative method for solving 

linear systems. Applied Mathematics and Mechanics (English Edition), 27(9), 1275–1279. 
https://doi.org/10.1007/s10483-006-0915-1 

Dey, S. K. (1999). A novel explicit finite difference scheme for partial differential equations. Mathematical 
Modelling and Analysis, 4(1), 70–78. https://doi.org/10.1080/13926292.1999.9637112 

Diethelm, K., & Freed, A. D. (1999). On the Solution of Nonlinear Fractional-Order Differential Equations Used in 
the Modeling of Viscoplasticity. In Scientific Computing in Chemical Engineering II (pp. 217–224). 
https://doi.org/10.1007/978-3-642-60185-9_24 

Evans, D. J., & Haghighlt, R. S. (1984). Explicit Group Versus Implicit Line Iterative Methods. International 
Journal of Computer Mathematics, 16(4), 261–316. https://doi.org/10.1080/00207168408803442 

Gorenflo, R., & Mainardi, F. (1997). Fractional Calculus. In Fractals and Fractional Calculus in Continuum 
Mechanics (pp. 223–276). https://doi.org/10.1007/978-3-7091-2664-6_5 

Gunawardena, A. D., Jain, S. K., & Snyder, L. (1991). Modified iterative methods for consistent linear systems. 
Linear Algebra and Its Applications, 154–156(C), 123–143. https://doi.org/10.1016/0024-3795(91)90376-8 

Hackbusch, W. (2016). Iterative solution of large sparse systems of equations. In Applied Mathematical Sciences 
(Switzerland) (Vol. 95). https://doi.org/10.2307/2153387 

I., E., Richtmyer, R. D., & Morton, K. W. (1968). Difference Methods for Initial-Value Problems. Mathematics of 
Computation, 22(102), 465. https://doi.org/10.2307/2004698 

Kepczynska, A. (2005). Implicit difference methods for first-order partial differential functional equations. 
Nonlinear Oscillations, 8(2), 198–213. https://doi.org/10.1007/s11072-005-0049-z 

Langlands, T. A. M., & Henry, B. I. (2005). The accuracy and stability of an implicit solution method for the 
fractional diffusion equation. Journal of Computational Physics, 205(2), 719–736. 
https://doi.org/10.1016/j.jcp.2004.11.025 

Saad, Y. (2003). 9. Preconditioned Iterations. In Iterative Methods for Sparse Linear Systems (pp. 261–281). 
https://doi.org/10.1137/1.9780898718003.ch9 

Salkuyeh, D. K., & Shamsi, S. (2012). A preconditioner for the SOR-like method for the augmented systems. 
Chiang Mai Journal of Science, 39(2), 213–221. 

Sene, N., & Fall, A. N. (2019). Homotopy Perturbation ρ-Laplace Transform Method and Its Application to the 
Fractional Diffusion Equation and the Fractional Diffusion-Reaction Equation. Fractal and Fractional, 3(2), 
14. https://doi.org/10.3390/fractalfract3020014 

Shen, H. L., Zong, Y., & Shao, X. H. (2009). Preconditioned SOR-type iterative methods for solving linear systems. 
Dongbei Daxue Xuebao/Journal of Northeastern University, 30(8), 1213–1216. 

Sunarto, A. (2014). Borneo science 34: march 2014. Borneo Science, (March), 34–42. 

3419



Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management 
Detroit, Michigan, USA, August 10 - 14, 2020 

© IEOM Society International 

Sunarto, A., Sulaiman, J., & Saudi, A. (2015). Solving the time fractional diffusion equations by the Half-Sweep 
SOR iterative method. In Proceedings - 2014 International Conference on Advanced Informatics: Concept, 
Theory and Application, ICAICTA 2014. https://doi.org/10.1109/ICAICTA.2014.7005953 

Tam, H. S., Wei, Y. M., & Jin, X. Q. (2005). A note on preconditioning for M-matrix. Applied Mathematics Letters, 
18(10), 1137–1142. https://doi.org/10.1016/j.aml.2005.02.001 

Young, D. . (1971). Iterative solution of large linear systems. 
 
TABLE 1. Comparison between number of iterations (K), the computational time ( seconds) and maximum absolute 

errors (MAE) for both iterative methods  at 75.0,50.0,25.0=α  
 
M 

 
Method 

α = 0.25 α = 0.50 α = 0.75 
K Time MAE K Time MAE 

 
K Time MAE 

 
128 
 

FSPSOR 281 2.24 9.95e-05 229 1.95 9.84e05 164 1.63 1.29e-04 
HSPSOR 156 1.21 9.95e-05 137 1.06 9.84e05 132 0.99 1.30e-04 

256 
 

FSPSOR 1428 16.9 9.95e-05 1171 12.61 9.84e-05 814 8.90 1.29e-04 
HSPSOR 778 4.89 9.95e-05 486 3.31 9.84e-05 211 1.90 1.30e-04 

512 FSPSOR 5524 113.86 9.96e-05 4520 91.37 9.84e-05 3137 61.98 1.30e-04 
HSPSOR 3006 32.07 9.96e-05 1929 20.66 9.84e-05 931 10.60 1.30e-04 

1024 FSPSOR 20574 817.59 9.98e-05 16842 662.23 9.87e-05 11695 456.23 1.30e-04 
HSPSOR 11216 236.40 9.98e-05 7245 155.08 9.87e-05 3551 74.13 1.30e-04 

2048 FSPSOR 75580 3043.59 1.01e-04 61941 2894.70 9.90e-05 43070 977.10 1.30e-04 
HSPSOR 40270 1835.90 9.98e-05 25487 1320.76 9.84e-05 13208 552.95 1.30e-04 
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