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Abstract. In this study, we propose approximate algorithm solution of the space-
fractional diffusion equation (SFDE’s) based on a quarter-sweep (QS) implicit
finite difference approximation equation. To derive this approximation equation,
the Caputo’s space-fractional derivative has been used to discretize the proposed
problems. By using the Caputo’s finite difference approximation equation, a linear
system will be generated and solved iteratively. In addition to that, formulation
and implementation algorithm the Quarter-Sweep AOR (QSAOR) iterative
method are also presented. Based on numerical results of the proposed iterative
method, it can be concluded that the proposed iterative method is superior to
the FSAOR and HSAOR iterative method.
1. Introduction

In this paper we focus on numerical solution for one-dimensional SFDE’s. Generally,
linear SFDE’s given as follows

A
UGt _ ()2 UG oy UG) | 1) (1)

g ex” ox ()
With initial condition U(x,0)= f(x), 0 <x < ¢, and boundary conditions U(0,t)= g, (t),
Ufe,t)=g(t), 0<t<T.

We describe some necessary definitions and mathematical Freliminaries of the fractional

derivative theory which are required for our subsequent development of the approximation
equation for the problem in Eq.(1).
3

Definition 1.[1,2] The Riemann-Liouville fractional integral operator , J” of order- g is
defined as

Lok

Vi) =—[(x-0)? 'f(t)t, # =0 x>0 (2)
il

Definition 2.[2, 3] The Caputo’s fractional partial derivative operator, D” of order - g is

defined as

Dﬂf(x)_ 1 x flnl](t) at, f >0 (3)

- F(nl—ﬁ) J (x_t)ﬂ—nul

With m_1<ﬁgm1m€N, x>0.

In this work, we discretized SFDE’s equation using implicit finite difference scheme with
Caputo’s derivative operator in order to examine the implementation of QSAOR iteration
method in solving the resultant linear system of equations. The standard AOR iterative
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method also known as the FSAOR iterative method and HSAOR is implemented as control
method in order to investigate the performance of QSAOR iterative method.

2. Quarter-Sweep Caputo’s Implicit Finite Difference Approximation Equations

In this section, the space-fractional diffusion equation (1) is solved. In order to find

/

solution in Eq. (1), let us define = ,where, m=n+1 is positive even integer. By

m+1
implementing definition (2) we obtain

OV (x;ot,) _ ()P i R )
[—}(x,rf = 1—(3_13] i—%-‘.ﬁ (Yi pran —2Y 0 + Y [Z"'l] —'Z

Then the discrete approximation equation (4) can be written as

aﬁY(xn (n) 2 A
ox P =0 g.an .I:UZA.HgJ (Yl-_|+-|.ll - 2Y.-_|.n + Yl-_.--t.n ) (5)
. '/4;’)'1’1’ . 2-f .28
with 5 Gop <’ =(i+ ,] _ﬁ )

With apply Eq. (5) and QS implicit Caputo’s finite difference scheme, we approximate the
problem in Eq. (1) in order to derive the QS implicit Caputo’s finite difference approximation
equation as follows

) i Y. Y
"{[Yi.n - Y. +)=a;‘7ﬂ.+n f gf[‘{i-jﬂn 2t Y )‘*’ b;[uugillul +C Yin + f‘-” (6)
048 1
Fori = 4,8,...m-4. Again based on the approximation equation (6), we have

i,
AY,, = 4T an uz:ﬂgj (Yu i+dn 2Y, in T Y, i a.m)
=P

b—|'1(Y Y }_ Ci Yi.n + ';{Yi.n - fi.n (7)
8 i+d.n i=d,n

Then by simplifying Eq.(7), it can be shown

DY+ eV bV —al S (Y, -2V Y )=, (8)
j=8
h . ;u_fJf L L A_(r ) *
wit G =454 Y5 = g s G =6, Fr _-fuvJ fi =4 LJ’JM +‘F} d
Let us notice the approximation equation (8) being rewritten in the following form
R +a, Y, +sY  +pY ,, +q Y, +1Y_, =f )

SOV 4, ) = (—a:gfj,

i-j+4

Withg, =a " T g/(v
J=1z
si=lael +2ag?),p, = (o] —ajgl +2a]gl ~a}), g, =(-aisf + 20 +1-7), 7 =(-a] -7)
By applying Eq.(9) into all interior points of the solution domain problem in Eq (1), the
linear system to be expressed in matrix form as
AY =f (10)

with

(5]
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3. Formulation of QSAOR Iterative Method

In this paper, FSAOR, HSAOR and QSAOR iterative methods will be applied to solve
linear system generated from the discretizal®n of the problem in Eq.(1) as shown in Eq.(10).
To derive the ormulation of both proposed methods, let the coefficient matrix A in Eq.(10) be

expressed &
A=D-L-V (11)
Where D, L and V are diagonal, strictly lower triangular and strictly upper triangular matrices
reqpectlvely [4, 5, and 6% Then based on Eq. (11) the general scheme for the QSAOR
iterative method can be shown as ['7 8,9, and 18]

U{LH] = (D-wlL) [ﬂV f-o)L+ l_ﬂ}D]Uul_'_ﬁ[ —:UL) f (12)

Where {7"'represents an unknown vector at K0 iteration. Ba‘;icall{; the general algorithm 18}
QSAOR iterative method to solve linear system (10) would be generally described in
Algorithm 1.
Algorithm 1: QSAOR method
i Initialize T < 0 and . 19710
ii. For j=012,...,n—1 implement
a. For i=1p2p,...,m— p calculate

TN =(D ) [ + (5~ ol + (- PP W)+ plD-0t)" 1
b. Convergence test. If the convergence criterion
Hﬁ(kn) _C,(k)H <pg=10-10
€. is satisfied, go to next time level.
Otherwise go back to Step (ii).
Lii Display approximate solutions.

However, If p=1, Algorithm 1 will be named as FSAOR

4, Numerical Experiments
2

For the numerical experiments, two examples were considered to verify the effectiveness
of the implementation of Algorithm the QSAOR iterative method. To comparison between
FSAOR, HSAOR and QSAOR methods, three criteria will be considered such as number of
iterations (K), execution time (second) and maximum error at three different values of

=12, =1.5and g =1.8with different mesh sizes as 128, 256, 512, 1024 and 2048. In
implementations of two numerical experiments, the convergence test considered the tolerance
error, »=10"'". Results of numerical experiments, which were obtained from
implementations Algorlthm of the FSAOR, HSAOR and QSAOR iterative method, have been
recorded in Tables 1 and 2 respectively.
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Example 1: [3]

We consider the following space-fractional initial boundary value problem

N
WU ()220 () (13)

At finite domain 0<x <1, with the diffusion &(x) = 1 (Z)x-~.

Example 2: [3]

We consider the following space-fractional initial boundary value problem
=) =4
M:I‘(LZ)X’GL(;’G+3XE(ZX-l)c", (14)
Ox

o

With the initial condition /(x,0)=+?-* and zero Dirichlet conditions.

Table 1.Comparison between number of iterations (K), the execution time (second) and
maximum errors for the iterative methods using example at #=1.2,1.5,1.8

M Method [ =12 =15 =18
K Time Max K Time Max K Time Max
Error Error Error
128 FSAOR 65 1.32 2.37e-02 188 3188 6.21e-04 269 5.35 3.09e-02
HSAOR 46 0.53 2.24e-02 78 0.83 6.99%e-04 225 2.13 4.03e-02
QSAOR 22 0.11 1.99e-02 40 0.13 8.19e-04 90 0.23 4.11e-02
256 FSAOR 128 10.00 2.44e-02 370 28.88 5.69e-04 756 58.90 3.07e-02
HSAOR 77 294 2.37e-02 204 7.70 6.21e-04 732 28.08 3.99e-02
QSAOR 38 0.39 224e-02 96 0.16 6.99e-04 282 1.61 4.03e-02
512 FSAOR 270 84.05 2.47e-02 983 104 5.35e-04 2497 703 3.06e-02
HSAOR 129 19.88 2.44e-02 544 83.61 5.6%-04 2388 368.65 3.97e-02
QSAOR 73 1.69 2.37e-02 247 538 6.22e-04 912 19.44 3.09e-02
1024 FSAOR 577 125 2.49e-02 3640 689 5.13e-04 5220 1119 2.36e-02
HSAOR 27§ 179.11 2.47e-02 1457 502 5.35e-04 4098 982 3.38e-02
QSAOR 150 12.59 2.44e-02 677 5845 5.68e-04 2071 246.77 3.07e-02
2048 _FSAOR 1150 540 2.52e-02 5950 312 5.09e-04 13203 3920 2.30e-02
HSAOR 606 424 2.49e-02 3885 2035 5.24e-04 11376 3236 2.35e-02
QSAOR 321 112.5 2.47e-02 1751 614.16 5.36e-04 9653 2977 3.96e-02

Table 2.Comparison between number of iterations (K), the execution time (second) and
maximum errors for the iterative methods using example at £ -1.2,1.5,1.8

M Method p =12 P =15 =18
K Time Max K Time Max K Time Max
Error Error Error
128 FSAOR 4% 0.93 1.80e-01 133 1.41 5.44e-02 148 1.52 1.25e-04
HSAOR 34 0.45 1.73e-01 55 0.70 5.16e-02 135 1.24 1.76e-04
QSAOR 20 0.09 1.59e01 24 0.08 4.61e-02 46 0.16 3.20e-04
256 _FSAOR 97 3.58 1.84e-01 197 10.93 5.58e-02 457 16.66 1 44e-04
HSAOR 55 2.67 1.81e-01 145 691 5.44e-02 439 11.61 8.88e-04
QSAOR 29 027 1.73e-01 39 042 5.16e-02 147 0.87 1.76e-04
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512 FSAOR 106 18.71 5.39-01 525 83.02 1.28e-02 1357 19383 1.53e-04
HSAOR 97 17.52 1.84e-01 386 73.38 5.58e-02 1147 101.20  4.09e-04
QSAOR 49 1.08 1.80e-01 155 23.30 5.44e-02 475 49.98 8. 8e-04

1024 FSAOR 213 168 5.45e-01 1298 198 1.32e-02 4329 2103 1.25e-04
HSAOR 209 150.23 1.86e-01 1030 160 5.65e-02 3731 198423 1.54e-04
QSAOR 103 28.37 1.84e-01 413 33.56 5.58e-02 1538 426.05 4.09e-04

2048 FSAOR 815 398 1.92e-01 2506 912 5.73e-02 6520 3834 2.30e-04
HSAOR 450 273 1.86e-01 2326 878 5.80e-02 6290 3462 2.45e-04
QSAOR 220 75.40 1.86e-01 1099 378.68 5.65e-02 4940 1714 1.54e-04

5. Conclusion

In this work, we discussed the implementation algorithm of the QSAOR iterative
algorithm which uses two accelerated parameter. The QSAOR Algorithm has performance
good speedup and efficiency for computational time and number of iterations. Again, the
QSAOR algorithm has shown their superiority over the FSAOR and HSAOR algorithm. For
our future works, this study can be extended to investigate on the use of the AOR to combine
with the concept pre-conditioner iterative family.

References

[1] Zhang, Y. 2009. A Finite Difference Method for Fractional Partial Differential Equation.
Applied Mathematics and Computation.215:524-529.

[2] Li, C., D. Qian, and Y.Q. Chen. 2011. On Riemann-Liouville and Caputo Derivatives.
Hindawi Publishing Corporation Discrete Dynamics in Nature and Science. 1: 1-15.

[3] Azizi, H, and G.B. Loghmani. 2013. Numerical approximation for Space-Fractional
Diffusion Equations via Chebyshev Finite Difference Method. Journal of Fractional and
Applications.. 4(2): 303-311.

[4] Hasan, M.K., M. Othman, Z. Abbas, J. Sulaiman, and F. Ahmad. 2007. Parallel Solution
of High Speed Low Order FDTD on 2D Free Space Wave Propagation. Lecturer Notes in
Computer Science LNCS 4706.13-24.

[5] Sunarto, A., J. Sulaiman, and A. Saudi. 2014. Half-Sweep Accelerated Over-Relaxations
Iterative Method for the Solution Time-Fractional Diffusion Equations. Simposium
Kebangsaan Sains Mathematiks ke 22. Shah-Alam, Malaysia. 24-26 November 2014.
109-115.

[6] Young, D.M. 1954 Iterative Methods for Solving Partial Difference Equations of Elliptic
Type. Transaction of The AMS-American Mathematical Society. 76:92-111.

[7] Young, D.M.1971. lterative Solution of Large Sparse Systems.. London: Academic Press.

[8] Young, D.M. 1972. Second-Degree Iterative Methods for The Solution of Large Linear
Systems. Journal of Approximation Theory. 15:37-148.

[9] Hadjidimos, A. 1978. Accelerated Over Relaxation Method. Mathematics of Compuiation.
32:149-157

[10] Tian, H. 2003. Accelerated Over-relaxation Method for Rank Deficient Linear

Systems. Applied Mathematics and computation. 14:485-499.




Artikel

ORIGINALITY REPORT

10, 7« 7 3

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Submitted to University of Wales Swansea
Student Paper

2%

A. A. Dahalan, J. Sulaiman. "Implementation of
TAGE Method Using Seikkala Derivatives
Applied to Two-Point Fuzzy Boundary Value
Problems", International Journal of Differential
Equations, 2015

Publication

T

Longbin Wu, Zhong Chen, Xiaohua Ding. "A
stable minimal search method for solving
multi-order fractional differential equations
based on reproducing kernel space”,
Numerical Algorithms, 2020

Publication

T

www.researchgate.net

Internet Source

T

o

shodhganga.inflibnet.ac.in

Internet Source

T

www.asc.tuwien.ac.at

Internet Source

T




ir.soken.ac.jp

Internet Source

T

E Submitted to Curtin University of Technology <1
Student Paper 0%

www.intechopen.com

n Internet Source p <1 %
C. Y. Chan, P. C. Kong. "Quenching for

. . , < | %
degenerate semilinear parabolic equations”,
Applicable Analysis, 1994
Publication

Zﬁeng Li. "Chebyshev .acceleration for SOR- <1 o
like method", International Journal of
Computer Mathematics, 5/1/2005
Publication

R. Seshadri, T. Y. Na. "Group Invariance in <1 o

Engineering Boundary Value Problems",
Springer Science and Business Media LLC,
1985

Publication

Exclude quotes On Exclude matches Off

Exclude bibliography On



