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using the space fractional derivative of Caputo’s. The linear system will be generated
by the Caputo’s finite difference approximation equation. The resulting linear system
was then resolved using Half-Sweep Preconditioned Gauss-Seidel (HSPGS) iterative
method, which compares its effectiveness with the existing Preconditioned Gauss-

Seidel (PGS) or call named (Full-Sweep Preconditioned Gauss-Seidel (FSPGS)) and
Gauss-Seidel (HSPGS) methods. Two examples of the issue are provided in order to
check the performance efficacy of the proposed approach. The findings of this study
show that the proposed iterative method is superior to FSPGS and GS.

1. INTRODUCTION

From The previous studies in [1-5] many successful
mathematical models, which are based on fractional partial
derivative equations (FPDEs), have been developed.
Following to that, there are several methods used to solve these
models. For instance, we have transform method [6], which is
used to obtain analytical and/or numerical solutions of the
fractional diffusion equations (FDE). Other than this method,
other researchers have proposed finite difference methods
such as explicit, implicit and fast method [7-9] Also it is
pointed out that the explicit methods are conditionally stable.
Therefore, we discretize the space-fractional diffusion
equation via the implicit finite difference discretization
scheme and Caputo’s fractional partial derivative of order /2
in order to derive a Caputo’s implicit finite difference
approximation equation.

This approximation equationmlds a tridiagonal linear
system. Due to the properties of the coefficient matrix of the
linear system which is sparse and large scale, iterative methods
are the alternative option for efficient solutions. Among the
existing iterative methods, the preconditioned iterative
methods [10-12] have been widely accepted to be one of the
efficient methods for solving linear systems.

Because of the advantages of these iterative methods, the
aim of this paper is to conm;t and investigate the
performance effectiveness of the Half-Sweep Preconditioned
Gauss-Seidel (HSPGS) iterative method for solving space-
fractional parabolic partial differential equations (SPPDE’s)
based on the Caputo’s implicit finite difference approximation
equation. To investigate the effectiveness of the HSPGS
method, we also implement the Gauss Seidel (GS) and FSPGS
iterative methods being used a control method.

To performance the effectiveness of HSPGS method, let
space-fractional parabolic partial differential equation

(SPPDE’s) be defined as:
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with initial condition U(x0)=f(x), 0 < x < ¢, and boundary
conditions U(0,t)=g,(t), 0<t<T. U4, t)=g,(t), 0<t<T.

Then to develop the linear systems, some definitions that
can be applied for fractional derivative theory need to
developing the approximation equation of Eq. (1) in:

Definition 1. [13] The Riemann-Liouville fractional

integral operator, J # of order- £ is defined as:

Briy = Texo ! >0,x>0
J f{x}—nﬁ}i{x 0™ (that, B (2)

Definition 2. [13] The Caputo’s fractional partial derivative

operator, D of order - p is defined as:

1 x f{m](l) ﬁ}D
Df(x )= dt.
O S Te! frenra (3)

with m—1< #<m,meN, x>0.
¢ have the following properties when m—1< £ <m,

x>0: D’ :0,(kis a constant ),
0, for @B N, and n <[]
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where, function [ﬂ] denotes the smallest integer greater than
or equal to ﬁ ,No= {0,1,2,. ..}amd r(.)is the gamma function.

2. CAPUTO APPROXIMATION DERIVATIVE

Assume that h =— k is positive integer and using second
k

order approximation, we get
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Let us define
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then the discrete approximation of Eq. (4).
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Now we approximate Eq. (1) by using Caputo’s implicit
finite difference approximation:

d
AU, - Uin-l): L TION [Ui-j+1_n -2, + Ui-j-ln)
=0

(UH 2n T UL-Z,n]
1

+bi +CiUi,n +f’l,n

for i=2,4,...m-2. Then we can simplify the scheme
approximation equation as:

So, we get:
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For simplicity, let Eq. (5) for n >3 be rewritten as:
Ri+aU g, +5Uy +pU o, +qU;, #1505, =1 (6)
where,
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Then Eq. (6) can be used to construct a linear system in
matrix form as:

where,
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3. HSPGS METHODS

Before applying the HSPGS iterative meth§ilslwe need to
transform the original linear system (7) into the preconditioned
linear system.

A*I: f’g (8]

where,

A*ZPAPT,and f =Pf.U=P"x-

Actually, the matrix P is called a preconditioned matrix and
defined as [14-16] P=7+ S .

where,
0O -, O 0O 0 0
0O 0 —-» 0 0 0
s_|0 0 0 -n 0 0
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and the matrix I is an identical matrix. To formulate HSPGS

method, let the coefficient matrix A in (7) be expressed as
summation of the three matrices

A =D-L-V (9)
where, D, L and V are diagonal, lower triangular and upper

triangular matrices respectively . By using Eq. (9) and (11), the
formulation of HSPGS iterative method can be defined




generally as [11, 17, 18]:

4. INDING NUMERICAL

XN (D LYV (D— L) F (10) We have e_xamples of the SFPDE’s to yerify the

- - - effectiveness of the HSPGS methods. In comparison, three
criteria such as number iterations, the execution time (seconds)

where, x‘*"}reprcsems an unknown vector at (k+ )" iteration. and maximum error at three different wvalues of

The implementation of the HSPGS iterative method can be

described in Algorithm 1.

Algorithm 1: HSPGS method
. PP _ —10
L Initialize ;7 « pand £ « 10 .
ii. For #=12-----7 Implement
For ¢ =12.---.m —1calculate
L) =(D—L)“Vx(""J+(D—L)" r

W

plen) _ pr D)
Convergence test. If the convergence criterion ie

HU(“ fD_ R < o —yp10

is satisfied, go to
Step (iii). Otherwise go back to Step (ii).
iii Display approximate solutions.

F=12,=15andf =18 During the implementation of
the point iterations, the convergence test considered the

tolerance error, &= 01",
Example 1 [19]:

Let us consider the following space-fractional initial
boundary value problem

aU(x.1) d(x]aﬂu(x. t]+p[x, ), (11)

ct ax’

Example 2 [19] :
Let us consider the following space-fractional initial
boundary value problem

aUlxt) 5 @7U(x, t)
—=Tax ——=22

/ o0x

£3x 7 (2x -1, (12)

All numerical results for Eqns. (11) and (12), obtained from
application of GS, FSPGS and HSPGS iterative methods are
recorded in Table 1 and 2 by using the different value of mesh
size, M=128, 256, 512, 1024 and 2048.

Table 1. Comparison between number of iterations (K), the execution time (seconds) and maximum errors for the iterative
methods using exampleat # =1.2,1.5,1.8

p=12

f=15 pF=18

M Method g Time Max
Error

K Time Max K Time Max
Error Error

128 _FSPGS 36 1.09 2.37e-02

104 2.83 6.20e-04 345 948 3.99%-02

HSPGS 19 0.26 2.37e-02

42 1.24 6.20e-04 108 3.25 4.60e-02

256 _FSPGS 72 7.23 2 44e-02

272 2700  5.69-04 1123 11198 397e-02

HSPGS 36 2.50 2 Ae-02

104 1133 5.69e-04 345 44.05 4.59e-02

512 _FSPGS 151 58.11 2.47e-02

723 27620  5.36e-04 3659 139843  3.96e-02

HSPGS 72 2335 247e-02

272 12486  536e-04 1123 47823  4.55¢-02

1024 _FSPGS 328 49256 2 .49e-02

1935 94520  5.13e-04 11836 2138.11 3.95e-02

HSPGS 151 19363 2.49e-02

724 47313 5.13e-04 3657  1054.31 4.53e-02

2048  FSPGS 1547 122721 2 .50e-02

8320 434868 5.02e-04 47322 8979.18  3.93e-02

HSPGS 327 47253  2.50e-02

1938 312096 5.02e-04 22152 433575 4.51e-02

Table 2. Comparison between number of iterations (K), the execution time (seconds) and maximum errors for the iterative
methods using exampleat £ =12.1.5,1.8

f-12

p=15 p=18

M Method " K Time  Max

K Time Max K Time Max
Error Error

128 FSPGS 27 0.72

75 183 544e02 213 527 8.88e-04

HSPGS 15 0.25

30 054  544e-02 67 254 8.88e-04

256 _FSPGS 55 4.72

197 17.11  5.58e-02 686 5948  4.09%-04

HSPGS 27 1.38

75 783 558e-02 213 20.45 4.09e-04

512 FSPGS 116 3786

522 17092 5.65e-02 2213 73750  1.54e-04

197 7758 5.65e-02 686 33195  1.54e-04

1024 FSPGS 250 32255

1435 44381 5.69e-02 3452 82062  1.49-04

HSPGS 116 14781

522 29959 5.69-02 1224 41191  149-04

2048 FSPGS 518 41321

4125 T13.64 5.85e-02 5127 3173.73  1.20e-04

1
1
1
1
1
HSPGS 55 1051 1.86e-01
1
1
1
1

HSPGS 251 207381

1437 31127 5.85e-02 2253 1062.72  1.20e-04
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5. DISCUSSION AND CONCLUSION

In order to get the numerical solution of the space-fractional
diffusion problems, the paper presents the derivation of the
Caputo’s implicit finite difference approximation equations in
which this approximation equation leads alinear system. From
observation of all experimental results by imposing the GS,
FSPGS and HSPGS iterative methods, it is obvious at
P =12 that number of iterations have declined
approximately by 41.30-82.45% corresponds to the HSPGS
iterative method compared with the GS and FSPGS method.
Again, in terms of execution time, implementations of HSPGS
method are much faster about 51.18-92.43% than the GS and
FSPGS method. It means that the HSPGS method requires the
least amount for number of iterations and computational time
at f#=1.2 as compared with GS and FSPGS iterative

methods. Based on the accuracy of both iterative methods, it
can be concluded that their performance numerical solutions
are in good agreement.
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