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The Innovation Iterative Method and

its Stability in Time-Fractional
Diffusion Equations

Andang Sunarte®, Jumat Sulaiman®, “IAIN Bengkulu, Indonesia, Jalan
Raden Fatah Pagar Dewa, Kota Bengkulu, 38212, Indonesia, bUMS Malaysia,
Jalan UMS Kota Kinabalu, Kota Klnabalu, 88400, Malaysia, Email:
fandang99@gmail.com, ®jumat@ums.edu.my

In this research, we deal with the innovation or application iterative
methods of an unconditionally implicit finite difference approximation
equation and the one-dimensional, linear time fractional diffusion
equations (TFDEs) via Caputo’s time fractional derivative. Based on this
implicit approximation ¢&jation, the corresponding linear system can be
generated, in which its coefficient matrix is large scale and sparse. To
speed up the convergence rate in solving the linear system iteratively, we
construct the correspongflg preconditioned linear system. Then we
formulate and implement the Preconditioned Gauss-Seidel (PGS) iterative
method for solving th@)generated linear system. Two examples of the
problem are presented to illustrate the eftiveness of the PGS method.
The two numerical results of this study show that the proposed iterative
method is superior to the basic GS iterative method.

Keywords: Caputo’s fractional derivative, Implicit finite difference, PGS

Introduction

Based on previous studies by Meerschaert & Tadjeran (2004); Sunarto & Sulaiman (2019);
Sunarto, Sulaiman, & Saudi (2014); and Zhang (2009), many successful mathematical
models based on fractional partial derivative equations (FPDEs) have been developed. There
are several methods used to solve these models. For instance, we have the transform method
from Cetinkaya &éiymaz (2013); Chaves (1998); Gupta & Sharma (2010); Sene & Fall
(2019), which is used to obtain analytical and/or numerical solutions of the fractional
diffusion equations (FDEs). Other than this method, other researchers have proposed finite
difference methods, such as explicit and implicit methods (Agrawal, 2002; Dey, 1999; Sun
Cheng, 2003; Yuste & Acedo, 2005). Additionally, it is pointed out that the explicit methods
are conditionally stable. Therefore, we discretise the time-fractional diffusion equation via
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the implicit finite difference discretisation scheme and Caputo’s fractional partial derivative
of order & in order to derive Caputo’s implicit finite difference approximation equation. This
approximation equation leads a tridiagonal linear system.

Due to the properties of the coefficient matrix of the linear system, which is sparse and large
in scale, iterative methods are the alternative option for efficient solutions. As far as iterative
methods are concerned, it can be observed that many researchers, such as Cheng, et al (2006);
Hackbusch (2016); Saad (2003); and Young (1971), have proposed and discussed several
families of iterative methods. In addition to that, the concept of block iteration has also been
introduced by Evans (1985); Ibrahim & Abdullah (1995); Leblond, Rousselle, & Renaud
(2003); Parter (1981); and Yousif & Evans (1986) to demonstrate the a‘iciency of its
computation cost. Among the existing iterative methods, the preconditioned iterative methods
have been widely accepted to be some of the efficient methods for solving linear systems
(Bai, Huang, & Ng, 2007; Bo & Yang, 2012; Cheng et al., 2006; Gunawardena, Jain, &
Snyder, 1991; Honghao,et al 2009; Ito & Toivanen, 2006; Rusten & Winther, 1992; Saad,
1996).

Because of the advantages of these iterative methods, the aim of this paper is to construct and
investigate the effectiveness of the Preconditioned Gauss-Seidel (PGS) iterative method in
solving time fractional parabolic partial differential equations (TPPDE’s) based on Caputo’s
implicit finite difference approximation equation. To investigate the effectiveness of the PGS
thod, we also implement the Gauss Seidel (GS) iterative method being used a control
method.

To demonstrate the effectiveness of the PGS method, let the time fractional parabolic partial
differential equation (TPPDE’s) be defined as

E!ix, ) = a[x}é_U(:t’!} + ?J{x} 8&’{1,!} +c[x)U{x,r}
o ox o (1)
where a(x), b(x), and ¢(x) are known functions or constants and « is a parameter that refers to
the fractional order of the time derivative.

The outline of this paper is organised as follows: In Sections 2 and 3, an approximateg'mula
of Caputo’s fractional derivative operator and the numerical procedure for solving the time
Qctional diffusion equation (1) by means of the implicit finite difference method are given.
In Section 4, the formulation of the PGS iterative method is introduced. Section 5 shows a

numerical example and its results and conclusions are given in Section 6.
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Preliminaries

Before constructing Caputo’s implicit finite difference approximation equationw Problem
(1), the following are some basic definitions from fractional derivative theory used in this

paper.

Definition 1: The Riemann-Liouville frara'onal integral operator J“ of order -a according
to Mei & Peng (2016) and Young (1971), is defined as:

G = oy [ oy s ®>0 x>0 @

[

Definition 2: Caputo’s fractional partial derivative operator D“ of order - & gaccording to

Farid et al., (2019); Oliveira & Capelas De Oliveira (2019); and Young (1971), is defined as:

& o 1 TS a0 (3)
D® f(x)= l_.(n! —C()'([ (x — t)u—»]-w] dt,

with m—l<a <m, meN, x>0

To obtain the numerical solution of Problem (1) with Dirichlet boundary conditions, firstly
we derive an implicit finite difference approximation equation based on Caputo’s derivative
definition and the non-local fractional derivative operator. This implicit approximation
equation can be categorised as an unconditionally stable scheme. To facilitate us in getting
this approximation equation of Problem (1), let the solution domain of the problem be
resB'cted to the finite space domain ©=~=v _ with 0 =« <1_where the parameter o refers
to the fractional order of the time derivative. In addition to that, consider the boundary
conditions of Problem (1), g'm'l as

(0.0) = g, (), U(£.t) = =, (¢). and the initial condition

L(x0)= 7(x)

where gq(¢), 2, (¢). and f(x) are given functions. Discretise the approximation to the time
fractional derivative in Eq. (1) by using Caputo’s fractional partial derivative of order &,
defined as (Baleanu, Wu, Bai, & Chen, 2017; Hackbusch, 2016; Sunarto, Sulaiaman, & Saudi,
2016; Young, 1971):

(?u[x—s][
ot

t—s)“ds, t>0, 0<a<l (4)

0"u(x,1) 1 j
ac Tle-1)]
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Approximation for Fractional Diffusion Equation

According to Eq. (4), the formulation of Caputo’s fractional partial derivative of the first
order approximation method is given as
.
DIV y =0k 2. ‘”S‘a}(ui,n—j+l _U:‘,n—j) ®)
J=1

and we have the following expressions:
2 1

Tk T - a Xl —a )k~
and
mﬁa) = e (,F o l)]—u )

Before discretising Problem (1), m the solution domain of the problem be partitioned
uniformly. To do this, we consider some positive integers: m and #, in which the grid sizes in

space and time directions for the finite difference algorithm are defined as 5 _ o, — Y= 9 and
m

& —ar =L respectively,
n

Based cathese grid sizes, we construct the uniformly grid network of the solution domain,
where the grid points in the space interval [p ,] are indicated as the numbers

x, =ih, i m and the grid points in the time interval [0,7] are labelled
t; = jk, j=012...n. Then, the values of the function ¢/ (x. ) at the grid points are denoted as

U'.r :U(xr*t;)'

By using Eq. (5) and the implicit finite difference discretisation scheme, Caputo’s implicit
finite difference approximation equation of Problem (1) at the grid point centred at

x;,t; |=\ih, nk) is given as:
i 1;)=( e

n

00

qunzwr Uf\n vl Um i
j=1

1 1
= al P(Ui—l,n _ZUE,M + Ui+1,n )+ br' ﬂ(UHl,n - Ur'—l,n )+ CFUF,H * (6)
fori=12..,m-1.

Based on Eq. (6), this approximation equation is knows the fully implicit finite difference
approximation equation, which is consistent regarding first order accuracy in time and second
order in space. Basically, the approximation equation (6) can be rewritten based on the
specified time level. For instance, we have for n=2:
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n
a a; by 2a; a;p b |
oak 3 0 Win- o _Ui,n—jJ_(;_é_z_;]Ui—l,n +(Cf —T;]Uf,n +(}—; oy Vistn: (7a)
j=1 1 1 i
7
. 8
S O-(IJ'( Zm}a)(Ui‘u—_,ﬂ'-t—l — Ui',u—j ): pr'Ur'—l,u + q{Ur"u + rr'Ur'-t—l,n > Where
i=1
a. b. 25,- i; bi
[ St =6 —— =+ —
Pe=gr g T T T Ty
Also, forn = I:
~pilicn +qi Uiy —riUpsy = fiy, i=12,m—1 (7b)

where

) _ " . .
;= 1, 4 = O0gu Y- J(“ =UaJkU!-J| .

Based on Eq. (7b), it can be seen that the tridiagonal linear system can be constructed in
matrix form as

AU = f (8)
where
*
41 -1
5
— P2 o2 -2
-
A= P393 e
>
—Pm-2  dm-2 _’ln—Z
— Pm-—1 dm—1 (m—1 be(m—1)
U=[U|| Uz Uzr - Umo21 Umfl.ll
r=Uy + Uy Usy Uz o U U + U I
. 11T A% 01 21 31 m=2,1 m=11 1T Pm-1Ym]1

Analysis of Stability

In this section, we have considered the stability analysis of the implicit finite difference
approximation equation in Eq. (7). For stability analysis, we will use Von-Neumann’s
(Langlands & Henry, 2005; Zwillinger, 1992) and the Lax equivalence theorem (I, E.,
Richtmyer, & Morton, 1968; Jossey & Hirani, 2007; Schultz, 1966). It follows that the

numerical solution of the approximation equation in Eq. (7) converges to the exact solution as
hk — 0.
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Theorem 1:

The fully 1mﬁ1t numerical method Eq.(7), the solution to Eq.(1) with 0 < & < 1on the fini
domain 0<x<1, with zero boundary condition U(0,¢)=U(/,¢)=0 for all ¢>0, is

consistent and uncondltlonally stable.
Proof:

To examine the stability of the proposed method, we find the solution of the form
U =¢,e™", i =+-1, @ real. Therefore, Eq. (7) becomes

rm,rh rmy}] _ i ) _
o-a.k H— ] a k Z (0 ( n l.’+] ‘fn—_,ﬁe -

ieof j—4)h icoih i j+4 Jh
7pr'é:ne +(O-rx,k 79‘." ,ne 73‘.?;:!!6 (9)

By simplifying and reordering over Eq. (9), we have:

O kSnml — aizw (n el T n—;) ,,((( P,_”)CO"’( ))+(o-(x,k _(_{;))

j=2

this can be reduced to:

£+ Yo &)
& =
[1 + 7@’ R/ ) cos(a)h)+ LJ

(10)

In Eq. (10), it can be observed that

{1 + Mcos(a)h)—q—'] =1,

e o

a .k a.k

forall &, n, @, h and k we have:

& <&. (11

We also have o
g}r < grr—] + Zmﬁa}(érr—_; - gn—_fﬂ)’ nz 2 (lz)

Thus, for n=2, the last inequality implies

& <&+l —&)
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Again, repeating the above process, we can get
S, S8, j=12,..n-1.
From Eq. (12), we finally have

§1r < gnfl + Z m_ﬁa)(grrfj - gﬂ*_ﬁ»] ) = grrf,f .
=

Since each term in the summation is negative, it shows that inequalities in Eq. (11) and Eq.
(12) imply

n = n-1 = §n—2 <..= §I = 50'
Thus,

£ = ‘U_:' . and we have stability.

<& = ‘U:J‘ = ‘f{;

. Which entails HU ;’

<|,

Formulation of Preconditioned Gauss-Seidel

In relation to the tridiagonal linear system in Eq. (8), it is clear that the characteristics of its
coefficient matrix are large-scale and sparse. As mentioned in Section 1, manwsearchers
have discussed various iterative methods, such as (Bo & Yang, 2012; Cheng et al., 2006;
Gunawardena et al., 1991; Hackbusch, 2016; Honghao et al., 2009; Saad, 2003; Young, 1971;
Yousif & Evans, 1986). To obtain numerical solutions of the tridiagonal linear system (8), we
sider the Preconditioned Gauss-Seidel (PGS) iterative method (Bo & Yang, 2012; Cheng
et al., 2006; Gunawardena et al., 1991; Honghao et al., 2009), which is the most known and
widely used for solving any linear system.
Before applying the PGS iterative method, we need to transform the original linear system (8)
into the preconditioned linear system

A" x=s" (13)

where

The matrix P is called a preconditioned matrix, and is defined as (Gunawardena et al., 1991;
Kohno, Kotakemori, Niki, & Usui, 1997)

where P=7+ S (14)
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0 — 0 0o o 0

0 0 =—m» 0 © 0
g_|0 o 0 - 0 0

0o o . . . 0

0o o 0 0 0 —ry

0 o 0 o o0 0

(m—1)x(m—1)
and the matrix | is an identical matrix. To formulate the PGS method, let the coefficient
matrix 4" in (8) be expressed as the summation of the three matrices

A =D-L-V (15)

where D, L, and V are diagonal, lower triangular, and upper triangular matrices respectively.

By using Eq. (9) and (11), the gggmulation of PGS iterative method can be defined generally
as (Bo & Yang, 2012; Cheng et al., 2006; Gunawardena et al., 1991; Honghao et al., 2009;
Langlands & Henry, i@S)

D) _(po )yl Wy (p - z) ! (16)
~ - -

where x(f"'l)represents an unknown vector at (k+/)" iterations. The implementation of the

PGS iterative method can be described in Algorithm 1.
Algorithm 1: PGS

i. Initialise 7. oand , . 171°.

il For /=127 Implement

rqul‘z ----- m=1 calculate
&) oyl By (po )t

o k+1) _ pT (k+1)

Convergence test. If the convergence criterion,

8 ”U(k"‘l)_u(k)Hg.:::lO_ln
Le.ll~ - , 1s satisfied, go to

Step (iii). Otherwise go back to Step (a).

iii Display approximate solutions.

Numerical Experiment

By using the approximation Eq. (7), we consider one example of the time fractional diffusion
equation to test the effectiveness of the Gauss-Seidel (GS), and Preconditioned Gauss-Seidel
(PGS) iterative methods. In order to compare the effectiveness of these two proposed iterative
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methods, three criteria have been considered: the number of iterations, execution time (in
seconds), and maximum absolute error at three different values of 0 =0.25, « = 0.50 and o =
0.75. For the implementation of both iterative schemes, the convergence test considered the

tolerance error, which is fixed as €=107"",

Example 1 (Demir, Erman, Ozgﬁr, & mrkmaz, 2013):
G“U(x,r) _ 62U(x, r]

— — . O<a<l,02x<y, t>0 (17)
ot ox
where the boundary conditions are stated in fractional terms
U(0,) == ()= + (18)
T(a+1) (e +1)
and the initial condition
U(x0)=x7. (19)

Followina Eq. (17), as taking a =1, it can be seen that Eq. (17) can be reduced to the
standard diffusion equation

6Ul.r,r]_62U[_x,I)

a a2 ‘

subjected to the initial condition

0<x<y, >0, (20)

U(x,0)= x2 ]
and boundary conditions
U(0,2)=2kt, U(£,1)= 17 + 2k

Then, the analytical solution of Eq. (19) is obtained as follows:
Ulx,t)= x* + 2kt.

Now, by applying the series
m=l n ] @ m=l qmati nar+
Usr)-S 0"Ulx0) 1" RSk UE);.D] f
per B S = ™ Tlna+i+l)

To U(x,) for 0 < <1, it can be shown that the analytical solution of Eq. (17) is given as

a

t

)
Ulx,t)=x +Hk1’({x+1)'

Example 2 (Demir et al., 2013):

Let us consider the followir@ime fractional initial boundary value problem, defined as

a—g{(ﬂ:%f%ﬁ, O<a<l,0<x<y, >0 (21)
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where the boundary conditions are en in fractional terms
U, =0, U(LH=¢e", (22a)
and the initial condition is

U(x,0)=x2. (22b)

Regarding Eq. (21) and &« =1, it can be shown that Eq. (21) can also be reduced to the
standard diffusion equatimm

oUlt) 1 20Ut o o0 s 23)
ot 2 o’

Then, the analytical solution of Eq (23) is obtained as follows:
U(x,t)=x"¢".

Now, by applying the series
49} m- 16 U(x{])t o m- lamnHU( 0) ot

Unt)= L —— =+ 2 %

't o n! “1i0 ””’H'f [(no+i+1)
to U(x,t) for 0 <a <1, it can be shown that the analy”[lcal solution of Eq (21) is stated as

o Qer 3
Ulx,t) = x2[1+ EX P P +..
Da+1) TQa+l) TGa+l)

All the results of numerical experiments for equations or problems (17) and (21), obtained
from the implementation of GS and PGS iterative methods are recorded in Table 1 and Table
2. For different values of mesh sizes, m = 128, 256, 512, 1024, and 2048.

Conclusion

In order to get the numerical solution of time fractional diffusion problems, the paper
presents the derivation of Caputo’s implicit finite difference approximation equation in which
this approximation equation leads a linear system. From the observation of all experimental
results and by imposing the GS and PGS iterative methods, it is obvious at ¢ =025 that the
number of iterations has declined approximately by 64.87-99.82%. This corresponds to the
PGS iterative method, compared with the GS method. Again, in terms of execution time, the
implementations of PGS method are much faster, about 4.96-93.03% faster than the GS
method. This means that the PGS method requires the least amount of iterations and
computational time for @=0.25 when compared with GS iterative method. Based on the
accuracy of both iterative methods, it can be concluded that their numerical solutions are in
good agreement.
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Figure 1: Graph Performance of GS and PGS Methods Example 1, Where a =0.25, a =
0.50 and a = 0.75,
Mesh Size vs K
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Figure 2: Graph Performance of GS and PGS Methods Example 1, where a = 0.25, a =
0.50 and a = 0.75,
Mesh Size vs Execution Time (Seconds)
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Figure 3: Graph Performance of GS and PGS Methods Example 2, where a = 0.25, a =
0.50 and a = 0.75,
Mesh Size vs K
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Figure 4: Graph Performance of GS and PGS Methods Example 2, where a = 0.25, a =
0.50 and a = 0.75,
Mesh Size vs Execution Time (Seconds)
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Table 1: Comparison of the Number Iterations (K), Execution Time (Seconds) and
Maximum Errors for the Iterative Methods Using an Example where
a=0.25,0.50,0.75

a=0.25 a=0.50 a=0.75
M Method K Time Max Time 2 g Time
Error Error Error
128 GS 21017 37.73 9.97e- 13601 5.92 9.86e- 6695 2.94 1.30e-
05 05 04
PGS 7292 35.86 9.96e- 4715 2.23 9.84e- 2319 1.93 1.30e-
05 05 04
256 GS 77231 343.63 1.00e- 50095 42,17 9.90e- 24732 20.70 1.30e-
04 05 04
PGS 26884 261.56 9.98e- 17417 16.68 9.87e- 8585 12.37 1.30e-
05 05 04
512 GS 281598 2747.34 1.02e- 183181 339.85 1.0le- 90783 166.75  1.32¢0-
04 04 4
PGS 08422 1916.28 1.00e- 63298 123.01 9.96e- 31619 62.78 1.31e-
04 05 04
1024 GS 1017140 6828536  1.09e- 663971 245453 1.08e- 330622 1209.39 1.40e-
04 05 04
PGS 357258 14064.44  1.04e- 232784 1007.47 1.03e- 115617 82093 1.35e-
04 05 04
2048 GS 3631638 15891430 1.38e- 2380946 17795.25 1.38e- 1192528 8794.26 1.7le-
04 04 04
PGS 21156 4104.17 1.36e- 19153.0 323984 134e- 12899 13055 1.35e-
04 05 04
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Table 2: Comparison of the Number Iterations (K), Execution Time (Seconds) and

Maximum Errors for the Iterative Methods Using an Example where
a =0.25,0.50,0.75
a=0.25 a=0.50 a=0.75
M Method K Time Max Time Max Time Max
Error Error Error
128 GS 230579 12.46 182947 10.99 8.28e- 112911 9.98 1.37e-
1.95e- 02 01
02
PGS 2873 8.48 1.95e- 1398 7.00 8.28e- 655 4.44 1.37e-
02 02 01
256  GS 817596 11024 1.95e- 100946 53.98 8.29e- 880921 35.98 1.30e-
02 02 04
PGS 10624 96.54 1.95e- 5162 35.69 8.2%e- 2420 15.95 1.37e-
02 02 01
512 GS 2853149 107125 1.95e- 2282930 79732 8.29e- 1482921 39732 1.37e-
02 02 01
PGS 39608 648.25 1.95e- 18957 27723  829%- 8911 18475 1.37e-
02 02 01
1024 GS 9767783  1487.01 1.09e- 11884877 96492 8.29e- 9884872 664.92 1.40e-
02 02 04
PGS 142635 791.55 1.95e- 69108 49297 829 32602 420.11  1.37e-
02 02 01
2048 GS 32773526 3266.51 1.38e- 29754285 2106.87 8.29e- 17752282 1585,23 1.37e-
02 02 01
PGS 487355 254323 1.95e- 240051 1781.32 8.29%e- 116801 951,53  1.37e-
02 02 01
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