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@stract: In this study, the numerical solution of a space-fractional parabolic partial differential
equation was considered. The investigation of the solution was made by focusing on the space-
fractional diffusion equation (SFDE) problem. Note that the symmetry of an efficient approximation
to the SFDE based on a numerical method is related to the compatibility of a discretization scheme
and a linear system solver. The application of the one-dimensional, linear, unconditionally stable,
and implicit finite difference approximation to SFDE was studied. The general differential equation
of the SFDE was discretized using the space-fractional derivative of Caputo with a half-sweep finite
difference scheme. The implicit approximation to the SFDE was formulated, and the formation of a
linear system with a coefficient matrix, which was large and sparse, is shown. The construction of
a general precq@litioned system of equation is also presented. This study’s contribution is the in-
troduction of a half-sweep preconditioned successive over relaxation (HSPSOR) method for the so-
SFDE-based system of equation. This work extended the use of the HSPSOR as an
efficient numerical meth
the 5th North American

agement in Detroit, Michigan, USA, 10-14 August 2020. The current work proposed several SFDE

lution of
r the time-fractional diffusion equation, which has been presented in
ternational Conference on industrial engineering and operations man-

examples to validate the performance of the HSPSOR iterative method in solving the fractional dif-
fusion equation. The outcome of the numerical investigation illustrated the competence of the
HSPSOR to solve the SFDE and proved that the HSPSOR is superior to the standard approximation,
which is the full-sweep preconditioned SOR (FSPSOR), in terms of computational complexity.

Keywords: implicit finite difference scheme; Caputo's partial derivative; HSPSOR; space-fractional;
fractional diffusion equation

1. Introduction

In recent years, many effective mathematical physics models have been developed
using the theory and applying the partial fractional derivatives. In most of the fractional
partial-differential-equation-related works of literature, partial fractional derivatives ap-
pear in many anomalous phenomena modelling a@n complex systems theory. Exam-
ples include a fractional mathematical model of the dynamics of the cancer chemotherapy
effect based oth the time instant and the time history [1]; a fractional mathematical
model of the population dynamics among cancer stem cells, tumor cells, healthy cells, the
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gct& of exce rogen and the body's natural immune response on the cell populations
[2]; a fractional mathematical m o investigate the dynamics of tuberculosis between

the children and the adults [3]; a fractional model an of energy supply-demand system
[4]; and a fractional mathematical model of the COVID-19 pandemic [5].

The success of fractional partial differential equations was attributed to the derivative
order's generalization, from integer-order to arbitrary order. The fractional derivatives in
the fractional partial differential equations have an effective memory function that enables
many physical phenomena to be described effectively. Fractional partial differential equa-
tions can be categorized as a time-fractional type, a space-fragfipnal type, and a time- and
space-fractional type. Our research focused on investigating the numerical solution of the
ce-fractional partial differential equation, particularly the parabolic type equation such
as the space-fractional diffusion equation (SFDE). This research focus came from the need
to discover an efficient solution for the SFDE problem.

Based on our short review of the existing solution methods, many researchers have
suggested the finite-difference method. The method of finite difference can be implicit or
explicit, depending on its stability to obtain the solution [6-10]. Since SFDE involves
changing the time and space of a contin variable, numerical treatment such as finite
difference discretization is necessary to transform the differential equation into a finite
system of linear equations that a computer can solve. Although SFDE can be solved with-
out discretization, this research focused on improving an iterative method that is mostly
formulated based on a discretized equation. Furthermore, the iterative method works best
in obtaining an accurate approximate solution when a finite system of equations is large
and © lex. Other than the method of finite difference, several methods have been pro-
posed to solve the space-fractional problems, such as the spectral collocation method [11],
the boundary value method [12], the finite volume method [13], and the method of lines
and splines [14].

In this study, an unconditionally stable implicit finite difference scheme and the
order Caputo fractional partial derivative were executed to discretize the SFDE and to
obtain the correct approximation equation. The generated system of equation after the
approximation equation was used on the solution domain, which led to a tridiagonal lin-
ear system. Since the sparse and large-scale linear system’s coefficient matrix is difficult
to be solved analytically, an iterative method is employed as an alternative. In terms of
the efficiency of the iterative processes, many authors [8,15,16] have suggested and de-
bated over several numerical iterative methods. Besides that, the block iteration has been
presented [17] to show the computation cost efficiency improvement by separating sys-
tems of equations. The preconditioned iterative methods have also been widely recog-
nized as the competent methods for solving linear systems. Thus, the symmetry in solving
the SFDE problem via a numerical method exists in the use of the finite difference discreti-
zation scheme and the iterative method. A finite difference scheme needs to be uncondi-
tionally stable so that the solution can be obtained regardless of the time and space step
sizes used. On the other hand, an iterative method needs to be efficient, which means the
accurate solution of a hi complex linear system can be computed in a short time.

The contribution of this study was to build and examine the efficacy of the half-sweep
preconditioned SOR (HSPSOR) method, which was formulated from the use of implicit
finite difference and the Caputo fractional derivative, for resolving the SFDE implicitly.
We used the full-sweep preconditioned SOR (FSPSOR) iterative techniques as a con-
trol method to analyze the efficacy of the HSPSOR method. To begin the formulation and
the 1na;tlgat10n of the HSPSOR method, we considered the following general form of the
SFDE as follows:

aU(x,t) —B ak U(x,t) BU(x,t)
at ' 9xP ax

where A;,i=1,2, and 3 were arbitrary constants, and B(x,t) was a known function.
Notice that when the value of § in Equation (1) equals 2, one can get a usual diffusion

+AU(xt) + B(x,t), (D
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equation with a gﬂond-order derivative in space. The derivative of @r-ﬁ for an SFDE
usually lies between 1 < f < 2 to provide flexibility in the study of the effect of the me-
m and the space interaction with the fluid [18]. The solution of Equation (1mhich is
U(x, t), can be approximated using the method of finite difference subject to the initial and
boundary conditions as given by:

U(x,0)=U, 0<x<]1, (2
and
U, t) =U,U(l,t) =Ug0<t<T. (3)

Before the space-fractional term in Equation (1) is discretized by the finite difference
mean, the following established definitions from the theory of fractional derivatives must
be defined as follows [19]:

Definition 1. Let a real number a >0, and let the function f be confinuon F'=(0,00)
and integrable on any finite subin fermm F = [0, ). Then, for x > 0, the Riemann—Liouville
fractional integral, f with the order « is defined as:

a_i * - a=1
1= i | G- 0@ @

Definition 2. Let a real mm B > 0,such that m— 1 < < m, where m is a natural number
element. Let the function f be continuous on F' = (0,0) and integrable on @finite subinter-
val of F = [0,00). Then, for x > 0, the Caputo fractional, f with the order f is defined as:

e

B
D = dé. 5
From Definition 2, the following properties hold:
pfc =o, (6)
and
0!
pix1={ T+1) 4 )

—x )
rm+1-5)
where 7 is an element of natural number and I'(.) isa gamma function.

2. Approximation to a Space-Fractional Diffusion Equation

Equation (1) approximates the space-fractional term using the Caputo definition and
the second-order half-sweep finite-difference. For more details about half-sweep
see[17,20-22]. Suppose that h = ;, with P as any positive integer. Then, the space-frac-
tional term can beetmted as:

ABU(x, t 1 *A2U(E ¢t
5o f S ®
dxF F(Z - ,8) 0 dx
which is also equivalence to:
f h
J+1) U('+2—j,n - 2U('—j,n + U{'—Z—j,n (Ph _ .f)l‘ﬁdf 9

i-2
a5 2 |
— , z
re ,8)1.:012&”" i 2h
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- . 2-8 2B
Let ¢ = r(ﬂ;—;) and g; = G + 1) - G) . Then, from Equation (9), we obtain:
ABU(x:,t,) =
Xiyln B
—xF ¢ Z gj (Uisz—jm — 2Ui—jp + Uiy jn)- (10)
j=0,2,4,...

Using Equation (10) and the implicit finite difference scheme for the remaining de-
rivatives in Equation (1), the simplified approximation to the SFDE via the finite difference
and Caputo partial derivative can be formulated into:

i-2

U, —A fu 20 U 42y U
YWin — 410 gj (Uisz—jn = 2U;_jn + Uiy jn) — E( i+2n — Uican)
. (11)
j=024,...
_AB U(’,n - B(’,n = YU(',n—ZJ
for i = 2,4,..,P — 2. Equation (11) can be rearranged neatly into:
biUi yn+ (Vi—cdUin—bUpon—a; = f; (12)

A . i
where b; = ﬁr?’i = At,¢; = Ay, qf = ﬂiE}=ﬁ.z.4,__.9f(ui+z—;‘.n —2UijutUigjn), @ =
Ay, and f; = yU;n_s + Bj,. Based on Equation (12), we can simply state an equation for
n>3 as:

Pili—en + qiUican + 1iUian + 5iUin + vilipzn — Ry ﬁ (13)
where Ri=a; 2;5.2.4.__.9:?(Ui+2—;‘.n —2Uijn+ Uimajn) 0 = _ai.gzsr‘?i = —ﬂi.gf +
2(1;3;9,1;- =b; — a;gf + 2a;gf —a;,5 = —a;gf +2a;+y—c;, and v; =-—a;—b;. From
Equation (13), the system of the linear equation can be expressed as follows:

AU =71, (19)

where
(52 Vs
e 16 Se Vg

Pio G0 To 510 V10

Pp-a Qqp-a Tp-a Sp-a Vp-a

L Pp-z Gp-2 Tp-2 Sep-2)(p_z)x(p-2)

U=[U, Uy Us - Upy UP—Z]T-J

and

T
f=—nU: faitqUs fo+psUs = fr-a+Rp_s fo_2—Tp2Up + Ry ]
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3. Half-Sweep Preconditioned SOR Formulation

The system (Equation (14)) is transformed in the form of the linear equation’s pre-
conditioned system as follows:

A'x = fr, (15)

where A* = pAp”,f* = pf, and U = p"x.

Further, to discover the numerical tridiagonal linear system solutions of Equation
(15), we considered the half-sweep preconditioned SOR (HSPSOR) iterative method. The
p was the preconditioned matrix and was given as [23]:

p=1+S5, (16)
where
[0 -, 0 0o 0 0 1
0 0 —Vy 0 0 0
_10 0 0 —vy; 0 0 |
5=lo 0~ o+ o« 0 |
[0 0o 0 0 0 —vHJ
0 0 0 0 0 0 (P=-1)x(P-1)

Meanwhile, I was an identity matrix. The generated coefficient matrix A%, as in
Equation (15), can be split as followsm
A*=D—-L-V, (17)

where D, L, and V were the diagonal matrices, the lower triangular, and the u trian-
gular, respectively. Considering Equation (17), the HSPSOR iterative method can be re-
written in the form of:

xEH = (D —wl) oV + (1 - 0)D]x® + (D —wl)'f*, a3

where the unknown vector, x**% was given the solution at the (k + 1)th iteration, and

the relaxation parameters were chosen within the range, 1 < w < 2. The computational
algorithm of the HSPSOR iterative method was as follows.

Algorithm 1 The HSPSOR iterative method.

i. Initialize U « Oand & « 10717,
ii.For j=0,1,...,n,and for i = 0,1,2, ..., P, calculate Equation (18), then approximate so-
lutions:
Ul+1) = pTylic+)),
If the convergence criterion is satisfied, that is:
a Juv —v®| <e,
1 p =
g0 to Step (iii). Otherwise, go back to Step (ii).
iii Stop.

4, Numerical Evaluation via C++

In this section, we implemented two examples of SFDE, using C++ programming to
verify the HSPSOR method's effectiveness. The C++ programming language was used to
code Algorithm 1 because of a better coding organization and comprehension, which en-
abled numerical computation to be conducted accurately. Furthermore, C++ program-
ming was preferred for this work compared to other mathematics applications such as
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Mathematica and Maple because the number of iterations and the execution time could
be recorded and optimized according to the code arrangement.

For the comparison pu rpo.ame considered a standard or full-sweep preconditioned
SOR by taking into account the num f iterations, the execution time (seconds), and
the maximum error at the values of f =12, f = 1.5, and f = 1.8. The tolerance error
considered in Algorithm 1 and the C++ simulation was set at ¢ = 107!, This stopping
condition was fixed for the different mesh sizes used, M; that is, 128, 256, 512, 1024, and
2048. There was no best value of £ because, when a large value of £ was chosen such as
£ = 1072, the number of iterations became small, and the result became inaccurate. More-
over, when a small value of £ was used, such as £ = 1071%?, the number of iterations be-
came large without improving the accuracy. Therefore, £ = 107 wasselected arbitrarily
to check the convergence of the solution. The solution can only be obtained through the
simulation of Algorithm 1 after the iteration process was completed successfully.

Example 1. g us consider the SFDE's initial boundary value problem:

au(x,t) Aauﬁ‘(x,t)
a Tt axP

+ B(x, t), 19

21
Example 2. Let us%sfder the SFDE’s initial boundary value problem:

aU(x, t) AUP(x,t)
x

=T(1.2)xf
at (-2)x" —5'F

+3x2(2x — De™t, (20)

Based on Tables 1 and 2, it can be observed that for the five different mesh sizes and
the three different sed for the simulation of FSPSOR and HSPSOR to solve Example 1
and 2, respectively, the number of iterations and the execution time required by HSPSOR
are always smaller than FSPSOR. These results illustrated the success of the Half-Sweep
finite difference scheme with Caputo’s space fractional to approximate the solution of
SFDE with lower computational complexity. The maximum errors produced by PSOR it-
eration to solve both Example 1 and 2 decreases with the increasing mesh sizes for § =
1.8 and 1.5. This means that with these values of §, the numerical solution of SFDE via
HSPSOR can be computed nearly to its exact solution with a sufficiently large mesh size
is used. However, for f = 1.2, the maximum error is getting larger when the mesh is
made to be narrower. This shows the sign of limitation from the use of PSOR iteration,
and a modification on PSOR iteration needs to be conducted to handle this problem.

Table 1. Computing the results with f =1.2,1.5, and 1.8.

=12 B =15 p=18

M Method K Time Max K Time Max K Time Max

Error Error Error
128 FSPSOR 34 0.84 2.37 = 102 80 1.90 6.20 x 10+ 246 5.76 3.99 x 102
HSPSOR 23 0.38 2.37 = 102 37 0.54 6.99 x 10+ 94 2.36 3.99 x 102
256 FSPSOR 67 5.33 244 =102 211 17.84 5.69 x 10+ 806 67.75 3.97 x 102
HSPSOR 34 273 2.44 % 102 94 6.90 6.21 x 10+ 303 34.65 3.97 x 102
512 FSPSOR 129 41.43 247 =102 566 182.83 536 =10+ 2635 84391 3.96 x 102
HSPSOR 67 22.65 247 =102 246 86.09 5.69 x 10+ 988 42158 396 =102
1004 FSPSOR 278 47235  249x102 1514 898.29 5.13x10% 11,829 2099.87 3.95x102
HSPSOR 141 20658 249x102 655 434.72 536 x 10+ 5413 1033.78 3.95 =102
2048 FSPSOR 608 1219.76  250= 102 4052 4299.73 502 =10+ 47,289 885228 3.93x102
HSPSOR 305 608.80 2.50=102 2188 213343  5.13 =10+ 23,143 442590 3.93x 102
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Table 2. Computing the results with f =1.2,1.5, and 1.8.
pg=1.2 g =15 £ =18
M M M
Mo Method o e ax K  Time ax K Time "
Error Error Error
128 FSPSOR 34 0.84 237 =102 80 1.90 6.20 = 10 246 5.76 3.99 =102
HSPSOR 23 0.38 237 =102 37 0.54 6.99 = 10 o4 2.36 3.99 =102
256 FSPSOR 67 5.33 244 =102 211 17.84 5.69 = 104 806 67.75 3.97 =102
HSPSOR 34 273 244 %102 o4 6.90 6.21 = 104 303 34.65 3.97 =102
512 FSPSOR 129 41.43 247 =102 566 182.83 536x10% 2635 843.91 3.96 =102
HSPSOR 67 22.65 247 =107 246 86.09 5.69 = 10 988 42158 396 =102
1004 FSPSOR 278 47235 249x102 1514 898.29 5.13x10+ 11,829  2099.87 3.95x=102
HSPSOR 141 20658 249x102 655 43472 536x10+ 5413 1033.78 3.95x102
2048 FSPSOR 608 1219.76  2.50=102 4052 429973 5.02x=10% 47,289  §85228 3.93x1072
HSPSOR 305 608.80 250=102 2188 2133.43  5.13 =10+ 23,143 442590 3.93 =102
5. Conclusions o
This paper describes the mathematical derivation of the implicit finite difference in
Caputo's approximation equations in which this approximation equation leads to a linear
system. By imposing the iterative methods of the F: R and the HSPSOR, based on
observation of all experimental effects, it was evident that the number of iterations of the
HSPSOR decreased by approximately 31.30-85.45 per cent compared with the iterative
methods of the FSPSOR. Meanwhile, the execution time was much quicker, by around
41.18-95.33% more than the FSPSOR method. This implies that, relative to the FSPSOR
iterative methods, the HSPSOR method needs the minimum number of iterations and
computational time. It can be inferred from the precision of both iterative approaches that
their numerical resolutions were in the acceptable domain. When the tabulated numerical
results of the HSPSOR to solve the SFDE was compared against the results from the ap-
plication of the HSPSOR on the time-fractional diffusion equation (TFDE) [24], it was
found that the overall maximum errors produced by the HSPSOR in solving the SFDE
were slightly greater than when the HSPSOR was used to solve the TFDE. A thoro
study of the error of the method used will be conducted in the future. From this work, the
capabilpof the half-sweep finite difference scheme to reduce the computational com-
plexity for solving space- and time-fractional diffusion equations and the compatibility of
the scheme with the PSOR iteration was shown.
Author Contributions: Writing —original draft preparation, A.5; writing—review and editing,
J.V.L.C; supervision, P.A. and ].S. All authors have read and agreed to the published version of the
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