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Abstract

This research examines the performance of the application Half-Swig} Preconditioned SOR (HSPSOR) method
together with an unconditionally implicit Caputo’s time—fractional finite difference approximation equation for
solving time-fractional partial diffusion equations (TFPDE’s). To do it, the implicit Caputo’s time-fractional
approximation equations and preconditioned matrix are used to construct the corresponding preconditioned linear
system. In addition to that, formulation and application the HSPSOR method are also presented. Based on numerical
results of the proposed iterative method, it can be concluded that the proposed iterative method is superior to the
Full-Sweep PSOR iterative methods.

Keywords :HSPSOR, Implicit Finite Different, Caputo’S, Time-Fractional

1.Introduction

Based on previous studies in (Dey, 1999; Diethelm & Freed, 1999; Gorenflo & Mainardi, 1997; Sene & Fall, 2019;
Tam, Wei, & Jin, 2005) many model in mathematical use fractional partial differential equations (FPDEs) to solve
fractional problems such as time-fractional partial diffusion equations (TFPDE’s). Following to that, there afgf])
several methods used to solve these models. For instance, we have transform method (Sene & Fall, 2019), which is
used to obtain analytical and/or numerical solutions of the fractional diffusion equations (FDE’s). Other than this
method, other researchers have proposed finite difference methods such as explicit and implicit (Chaves, 1998;
Evans & Haghighlt, 1984; Kepczynska, 2005). Also it is pointed out that the explicit iterative methods are
conditionally stable. Therefore, to solve the problems of the TFPDE’s needs to be discretized. By using the implicit
finite difference scheme and Caputo fractionggperator, a linear system at each time level can be construct through
the approximation equations. Therefore, Due to the matrix properties of the linear system, iterative methods are the
alternative option for efficient solutions

As far as iterative methods are concerned, it can be observed that many researchers such as (Cheng, Huang, &
Cheng, 2006; Hackbusch, 2016; Young, 1971) then (Saad, 2003) have proposed and discussed several families of
iterative methods. Among the existing proposed methods, the preconditioned iterative methods (Guiffvardena, Jain,
& Snyder, 1991; Salkuyeh & Shamsi, 2012; Shen, Zong, & Shao, 2009) have been widely accepted to be one of the
efficient methods for solving linear systems.

Because of the advantages of these iterative methods, the aim of this study is to develop and application the
performance of the HSPSOR method to solve (TFPDE’s) based on the implicit Caputos’s time-fractional finite
difference approximation equation. To application the performance of the HSPSOR, we also applying Full-Sweep
Preconditioned SOR (FSPSOR).
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To demonstrate the performance of HSPSOR, let TFPDE’s be given as
0“20r) _ ()22 20r) () P20) (i, "
o ay? ay
where a(y), b(y) and ¢(y) are clear functions or fixed, whereas the parameter o refers to the fractional order TFPDE’s
derivative.

2.Preliminaries
Previous to construct the discrete equation of Eq (1), in this section given some definitions can be applied for
fractional derivative theory

Definition 1 (Sunarm 2014; Young, 1971) The Riemann-Liouville operator is defined as

J f(}’]— j‘v—;)“f (r)dr ,a>0,y>0 2)
)o

Definition 2. (Sunarto, 2014; Young, 1971) The Caputo’s operator is defined as

. 1 X f{m}(}‘)
D )= dl
f) r(m_a)g Oy a>0 (3)

with m—l<a@<mmeN, y>0

To obffin the numerical solution of Eq. (1) with Dirichlet boundary conditions, we get numerical approximations by
using the Caputo’s derivative definition and consider the non-local fractional TFPDE’s derivative operator. This
approximation equation can be categorized as unconditionally stable scheme. On strength of Problem (1), the
solution domain of the problem has been restricted to the finite space domain 0 € y < yand 0 <@ <1, whereas &
refers to the fractional order of TFPDE’s derivative.
29

In addition to that, consider gitial and boundary (conditions) of Eq (1) be given as

Z(x,0)= f(y)hand Z(0,7) = g,(r) Z(,r)=g,(r) with g,(r) g, (r)kand f(y)
are given clear functions.
A discretize approximation to TFPDE’s Eq. (1) by using Caputo’s order- & , is given as [9,1 1]

“Z(x,r) 1 ]Eaf(v—s][r_s]_adq

= =0, D<a<l 4
a“  Tlh-1); or " “ @

3.Approximation For Fractional Diffusion Equations

Before constructing the Half-Sweep Caputo’s implicit approximation equation, let the Caputo’s fractional partial
derivative in Eq.(4) begggritten as

DJ'n 'n: akzm ! 1n—_,r'+1_Ur'\n—_,r']

(5)

and we have the following expressions

a,

4= a)l—a )k

mia} _ j]—a _[j_l]]—a

and

To facilitate us in discretizing the fractional Eq. (1) via the implicit finite difference discretization scheme, Firstly,
its the solution domain of the fractional problem is divided uniformly into several subintervals. To do this, we
consider several positive integers m and n in which the sizes of subinterval over space and time directions are stated
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as h=Ar=2" 0 and k= At = r respectively. According to these sizes of subinterval, we develop the uniformly
m n

finite grid netmk in the solution domain where the gr'apoints‘ over the space interval [D, y]and time interval [U T]
are denoted x; =ih, i=012,..m and tj = jk, j=0.12....n respectively. Then appmate values of the
function U(r t) at the grid points are labeled as U, ; = U[ X1 ;J By considering Eq. (5) and the Half-Sweep implicit

finite difference discretization scheme, the Half- Sweep Caputo’s implicit approximation equation of fractional Eq
(1) to the lEfi]CE grid point at [ ] [xh,_,rk) is can be shown as

”{:a’(U; . Ur'.rt—_f]
(16

1
- 2 (Ur—l;r 2Ur',n + Uf+l,n] + br' H

M:

o—a:"

[Uf+2;r _Uf—ln ]+ Cr'Ur';ra [6]

.h

for i=2,4,...,m-2. Actually, the approximation equation (6[gEJalso categories as one of family of fully implicit finite
difference approximation equations. Also this equation is first order accuracy in time direction and second order in
space direction. For simplicity, consider the Half-Sweep approximation equation (6) be rewritten at the specified
time level. For instance, we have for n 22 :

Tk z“-' [ L=+ LJ'.Jr— ,l'): pJ'LrJ'—l.Jr + qJ'LrJ'.Jr + rJ.LI'J.fl.JI" [?]
whele
. b. . . b.
Pi= 9;2 __r, %=c,-—a—’,, = 01.2 —
4h=  4h 2h* 4h=  4h
Also, we get forn =1,
U+ q Uy —rUy = fiy, 1=24,m=2 (8)
where

ﬂ’_{;'a} =1,q; = Oak =i Ji1=03U5 -

Referring to Eq. (8), we can get the tridiagonal linear system that can be constructed in matrix form as

AU=f (9
where
9 - |
—Pa 4 | \
. o I
(o] (o] (o]

~Pua dna —f;wq
— Pz dm2 [

P HH-'I
U:UZ,I U4,| Lﬁ L Um—4,| D‘m—l]]r’

[L1|+P|Lm Uy Ug L Upgy Upsy +pyalUsg

4.Analysis Of Stability

]-.
f=

In this section, we have considered the stability analysis of the implicit finite difference approximation equation in
Eq.(1). For stability analysis, we will use Von-Neumann’s theorem (Langlands & Henry, 2005) and the Lax
equivalence theorﬁn (I, Richtmyer, & Morton, 1968). It follows that the numerical solution of the approximation
equation in Eq.(1) converges to the exact solution as i,k — 0.

© IEOM Society International 3416




Proceedings of the 5" NA International Conference on Industrial Engineering and Operations Management
Detroit, Michigan, USA, August 10 - 14, 2020

Theorem 4.1.
The fully impli@Zpumerical method Eq.(1), the solution to Eq.(1) with 0 < <lon the finite domain 0 < x <1, with
zero boundary condition U (U,I) =U (I ,I) =0 for all t =0, is consistent and unconditionally stable.

Proof. To examine the stability of the proposed method, we findfor solution of the formU} = e i1, @

real. Therefore Eq. (1) becomes

o—a:k‘;n—IeWH - O—H:k Zm&ﬂ}[‘;n—jﬂemw _gn—jem;] J= - pr'é:nermu ) + [gfzj; _qf) nem'; _rfé:nem}lﬁ— ) (1 0]
J=2

by simplifying and reordering over Eq.(10), we have :

n \
£ {HJ{; _E J_
Ty kSn-1 O';z.x-zﬂ’; Sn—j+l "S- )=
J._-’

é:n (((_ Pi =5 )CDS(QJI))+ (o'a,!c —4q; ))
this can be reduced to :

n \
‘:n—] + Z@Ea}[‘fn—_; - ‘:rv:n—_,r'+] ]
=)

En = [ ) (11)
{1 +p"—+”cos[(u}:)+ q—’]
Ouk Tk
From Eq.(11), it can be observed that the conducted as
l+wcos[m}r]—i =1, forall @, n, w, h and k we have & <&,. (12)
Ok Ok

g
Sy _Zzwﬁ-“}[df,,_f—r:,,_mlnzZ‘ (13)
Z

Thus, for n=2; the last inequality implies

LG+ a’ga}[fﬁ -&)
Again rejfffling the above process, we can get

&, <&, J=L2,.n-1.
From Eq.(13), we finally have

S o)
§ = a1t Zw_.r' [é:n—_,r' _é‘:m—_,r'ﬂ]S §n—_,r"
=

Since each term in the summation is negative, it shows that the inequalities Eq.(12) and Eq.(13) imply

= = = = =
Sn =616, 2556 26
Thus,

&, = <& = , which entails .and we have stability.

I
L..f

0
T
L..f

= ‘f j = Hf J

i
L..f

5.Half-Sweep Preconditioned SOR Method

In relation to the linear system in Equation (R), it is clear that the characteristics of its coefficient matrix are large
scale and sparse. Basically in first Section, many scientist have discussed various iteration methods such as
(Gunawardena et al., 1991; Hackbusch, 2016; Saad, 2003; Salkuyeh & Shamsi, 2012; Young, 1971). To get
numerical solving of the tridiagonal linear system (R), we proposed the Half-Sweep Preconditioned Successive Over
Relaxation (HSPSOR) iteration method (Shen et al., 2009; Sunarto, Sulaiman, & Saudi, 2015), to solve any linear
systems.
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Before applying the HSPSOR iteration method, we need to transform the original linear system (9) into the
preconditioned linear system

A'Z:f’ (14)

where, A‘:PAPr,f*sz,Z=PTy .

Actually, the matrix P is called a preconditioned matrix and defined as (Gunawardena et al., 1991; Sunarto et al.,
2015)

P=i+S (13)
where
0 n 0 0 0 0
0 P B 0
¢o|0 © o s 0 0
o 0 (o] (o] (o] 0
4] 0 0 0 0 P
a o o a o 0 L s

and the matrix I is an identical matrix. To develop Half-Sweep PSOR iteration method, let consider the coefficient

matrix A" in equation (9) can be defined as summation of the matrices
A" = Digfjo—Va (16)
with Di, Lo and Va are diagonal, lower triangular and upper triangular matrices. By using Eq.(14) and (16) , the
fm‘mulat'q] of Half-Sweep PSOR iteration method can be rewritten as (Shen et al., 2009; Sunarto et al., 2015)
» bl) — (D—eL)! [(1 — @)D+ Vrz)]y{" [ (D—ewL) 1" (a7

(k+1)

where »"“"represents an unknown vector at (k+I)" iteration. The application of the HSPSOR iteration method

can be explained in this below.
HSPSOR method
i First U «@and ¢ « 10710,
ii. Then j=12K ,n Implement
a.  with j =ge@ K ,m — 1 calculate
¥ wrll) — (D — mL]_] [(1 — m]D+ Vm])‘{"}+ (D— mL)—] N

Z{‘k+]} _ P.!. )‘(A +1)
! i
b.  Next to the convergence test. If the convergence criterion i.e |, (s+1)_ )| = . _ g-10 15 satisfied,

go to Step (iii). If not go back to Step (a).
iii  Display approximate equation solutions.

6.Evolution Of Numerical Problems
By using appmximatiugq, (7), we consider one problem of the TFPDE’s to test the performance of the Fulll-

Sweep Preconditioned Successive Over-gBlaxation (FSPSOR) and Half-Sweep Preconditioned Successive Over-
Relaxation (HSPSOR) iteration meffllis. In order to compare the performance of these proposed iteration methods,
three criteria have been considered such as K (number of iterations), Time (in seconds) and Max Absolute El‘m
three values, where value of @ = 0.25, @ = (.50 and o = 0.75. For application of three iterative schemes, the

convergence test considered the tolerance error as €= 1077,
Let us examine the TFPDE’s initial boundary conditions value problem (Ali, S E, Ozgur & Korkmaz,

2013)
o Z[_v,r]:c‘}‘Z[_l:,r], D<=, 02y r>0; (18)
ore av”
. . - 2 2er®
with the boundary value conditions are Z{U,r’}:é, Z(I =174 . (19)
e+ T(a+1)
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and the initial value condition Z(y,0) = y*. (200

Overall results of evolution of numerical problem for equation (18), obtained from application of
FSPSOR and HSPSOR iteration methods are recorded in Table 1, where value of mesh sizes, m = 128, 256, 512,
1024, and 2048.

7.@anclusions

To In order to get the numerical solution of the TFPDE’s problems equation, this study give the derivation of the
implicit Caputo’s finite difference approximation equations in which this approximation equation leads a tridiagonal
linear system. Via all experimental results by imposing the FSPSOR and HSPSOR iteration methods, it is clear at
o =0.25 that K (number of iterations) have declined approximately by 64.27-96.14% conforms to the HSPSOR
iteration method compared with FSPSOR methods. Then for Time, application of HSPSOR itefflion method are
much faster about 25.84-94.18% than the FSPSOR methods. It can be also observed in Table 1 that the HSPSOR
method requires the least amount for K (number of iterations) and Time e = 0.25 as compared with FSPSOR
iteration methods. According to the accuracy of both iteration methods, it can be concluded that their numerical
solutions of TFPDE s are in good agreement.
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