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Abstract: The mathematical theory behind the porous medium type equation is well developed
and produces many applications to the real world. The research and development of the fractional
nonlinear porous medium models also progressed significantly in recent years. An efficient numerical
method to solve porous medium models needs to be investigated so that the symmetry of the designed
method can be extended to future fractional porous medium models. This paper contributes a new
numerical method called Newton-Modified Weighted Arithmetic Mean (Newton-MOWAM). The
solution of the porous medium type equation is approximated by using a finite difference method.
Then, the Newton method is applied as a linearization approach to solving the system of nonlinear
equations. As the system to be solved is large, high computational complexity is regulated by
the MOWAM iterative method. Newton-MOWAM is formulated technically based on the matrix
structure of the system. Some initial-boundary value problems with a different type of nonlinear
diffusion term are presented. As a result, the Newton-MOWAM showed a significant improvement in
the computation efficiency compared to the developed standard Weighted Arithmetic Mean iterative
method. The analysis of efficiency, measured by the reduced number of iterations and computation
time, is reported along with the convergence analysis.

Keywords: porous medium type equation; nonlinear diffusion; Newton method; finite difference
method; iterative method; weighted arithmetic mean

1. Introduction

The porous medium type equation is one of the classes of nonlinear parabolic evo-
lution equation. This class of partial differential equations appears in the description
and modeling of natural physical phenomena such as gas diffusion, fluid flow, and heat
propagation. The mathematical theory behind the nonlinear porous medium type equa-
tion is well developed and produces many applications to the real world [1]. A porous
medium type equation is used to investigate the diffusion of reactant gases across a thin
layer of porous material. For instance, the authors of [2] developed a mathematical model
to describe the flow of a mixture of ideal gases in a highly porous electrode for fuel cell
engineering. In their developed model, a porous medium type equation is used to simulate
the evolution of the gas mixture.

Porous medium type equation is also one of the important mathematical models
used in underground oil production. The permeability of rock above the underground oil
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wells, which represents the porous medium for the oil diffusion, determines the maximum
capacity of oil to be produced over a fixed period. Moreover, underground oil production
is affected by a phenomenon called instability during the oil extracting process. The
instability phenomenon appears in the form of irregular trembling fingers caused by the
immiscibility of water and oil. One article has proposed a mathematical model using the
formulated porous medium type equation to simulate the instability phenomenon [3]. In
addition to that, porous medium type equation has its importance in life sciences such as
bacteria biofilms growth model [4], cell population dynamics model [5], and cell to cell
adhesion model [6].

Real-world phenomena modeled by the porous medium type equation contains ar-
bitrary functions or constants. These functions and constants, which act as the model
parameters, may be specified through several experiments or applying the well-established
physical laws. However, some forms of these parameters are assumed in most numerical
studies. Some numerical experiments also use random values for the parameters to inves-
tigate the accuracy and efficiency of the proposed numerical approach. Many examples
of porous medium type equations with arbitrary parameters can be obtained in [7]. Be-
sides that, the research and development of the fractional nonlinear porous medium type
equation have progressed significantly in recent years and is recommended to read [8].

Many different numerical methodologies have been presented and applied to solve
the mathematical models of porous medium types. The models are varied in the degree
of nonlinearity, the number of derivatives terms, and the type of diffusion term. Thus, an
efficient numerical method to solve porous medium models needs to be investigated so
that the symmetry of the designed method can be extended to future fractional porous
medium models. A new numerical method called Newton-Modified Weighted Arithmetic
Mean (Newton-MOWAM) is introduced and studied in this paper. The solution of the
porous medium type equation is approximated by using a finite difference method. Then,
the Newton method is applied as a linearization approach to solving the system of nonlin-
ear equations. The nonlinear equations generated by the finite difference approximation
to a nonlinear partial differential equation usually possess a high computational com-
plexity. In order to overcome the high computational complexity to solve the nonlinear
problems, the complexity regulation by the Newton-MOWAM is formulated technically
based on the matrix structure of the system. Therefore, the contribution of this paper is
to propose the Newton-MOWAM method to solve the nonlinear porous medium type
equations efficiently with rigorously analysis of convergence by developing a theorem and
its corresponding proof.

2. Preliminary

The basic idea behind the numerical method to resolve the porous medium type
equation can be represented in the form of a linear system as follows:

Mg =F, )

where M is a coefficient matrix, Fisa given vector, and ¢ signifies the unknown vector
to be calculated. Basically, methods for solving Equation (1) can be categorized into two
main streams, i.e., direct and iterative methods. In principle, the direct method is the
solution of Equation (1) is determined through a finite number of arithmetic operations
which without consideration of round-off errors. In contrast to direct method, iterative
method generates a chronological order of approximations to the solution by recurrence
application of the same computational prototype at each iteration. When the size of the
linear system is large, iterative method is always preferable to be used compared to direct
method. Direct methods have the complexity of order O(m?), where m is the order of
a matrix. In contrast, for iterative methods, the work per one iteration is essentially the
matrix-vector multiplication, which for sparse matrices is sometimes much less than O(m?).
In addition, the number of iterations needed for the convergence, when using a suitable
preconditioner, is usually much less than O(m). Thus, the overall work is much less than
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O(m3), which means it has fast convergence. According to the book in [9], sometimes
we do not need to solve the system of equations exactly. For example, a few methods
for solving nonlinear system of equations exist in which each iteration involves a linear
system to solve. Frequently, it is sufficient to solve the linear system within the nonlinear
iteration only to a low degree of accuracy. Direct methods cannot accomplish this because,
by definition, to obtain a solution, the process must be completed. There is no notion of
early termination or an inexact solution.

A general technique to devise iterative method is based on an additive splitting
of matrix M into M = P — Q where M must be a nonsingular matrix. Then, the
corresponding iterative scheme for solving linear system as in Equation (1) is of the form

g =p19p) + PE, £=0,1,2,.., @)
with the new iterate (ﬁ(Hl), previous iterate (ﬁ(é), vector P~ 1F, and iteration matrix P 1 Q.
Based on the iterative form shown by Equation (2), there are two main types of iterative
methods, namely, stationary iterative and nonstationary iterative methods. Both types
of methods are classified based on the nature of iteration matrix P~1Q and vector P-1E.
For stationary methods, the iteration matrix P19 and vector P~IF remain constant
throughout the iteration process, while a new iteration matrix P19 and vector P~ IF are
generated in every step of the nonstationary iterative methods.

In this paper, several stationary iterative methods are reviewed, i.e., Alternating Group
Explicit [10], Modified Alternating Group Explicit [11], Iterative Alternating Decomposition
Explicit [12], Block SOR [13], and Weighted Mean (WM) [14,15]. Among these names of
stationary iterative method, the concept from the WM method is adopted to develop a
new efficient numerical method for porous medium type equation. The WM method is
a group of algorithms that have been widely used to solve matrix problems efficiently.
One of the WM methods to be investigated in this paper is the Arithmetic Mean (AM)
iterative method [16]. In the previous literature, the AM method and its variants have been
studied and scrutinized on linear and nonlinear systems arising from a variety of scientific
problems such as [17-22]. In [14,16], the numerical simulations showed that the AM method
compares favorably against the existing nonstationary iterative method, particularly when
the iteration matrix is strongly asymmetric. Further, Aruchunan et al. [23] introduced a
modified AM (MAM) method by initiating second weighted optimal value to improve
the convergence of AM algorithm via solving fourth-order integro-differential equations.
However, the authors did not discuss the convergence theorem and its corresponding
proofs in the MAM method. Therefore, in this paper, the MAM method is extended together
with Newton method for solving nonlinear porous medium type equation accompanied by
the complete convergence theorem and proof. The complete procedures on developing
Newton-MOWAM is described in the following segments.

3. Materials and Methods
3.1. Porous Medium Type Equation

This paper considers the numerical solution of a general one-dimensional porous
medium type equation as follows [7]:

ow 0 ow
% o [f(w)g}r ©)

where the function f(w) represents the type of diffusion term which is depending on the
nonlinear physical phenomenon to be modeled. For example, when f(w) = w* with the
real number &, the simplest form of porous medium equation used to model the instability
phenomenon in oil recovery can be obtained [3]. Using a finite difference method, the
solution domain of Equation (3) can be restricted about a unit square containing numerous
number of well distributed unknown grid points. The restriction is usually assumed by
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imposing suitable initial condition w(x,0) = wp(x),0 < x < X and the Dirichlet boundary
condition w(0,t) = a(t), w(X,t) = b(t),0 <t < T.

3.2. Finite Difference Approximation to Porous Medium Type Equation

To formulate the finite difference approximation equation to Equation (3), it is more
appropriate to differentiate the right hand side of Equation (3) into

*w

2
& —rw(5) s, (@

where f'(w) is the derivative of the smooth function f(w).

To set up the network of grid points as the approximate solutions of Equation (4),
we define the approximate solution by W(x,t) = W(iAx, jAt),i = 0,..,m,j = 0,..,n,
where Ax and At are the spatial and temporal step sizes, respectively. In this work, a
square-shaped domain is considered with the finite interval in space, [0, X] is divided into
m — 1 intervals that yields m unknown grid points, and the finite interval in time [0, T] is
divided into n — 1 intervals. By substituting a backward time operator and a second-order
center space operator into the time and space derivatives in Equation (4), respectively, the
implicit finite difference approximation to Equation (3) can be formulated as

Wijr1 =Wij Wistjor = Wirjin )
— A f (Wi,j+1) < 2Ax >
Witrj+1 = 2Wij + Wisg
%-f(VWJ+1)< — ¥e — >' o
and simplified into
At 2
Wijir = gl W) Wrinjn = Wi )
At

= 2/ Wijrt) Wik jin = 2DWijin + Wisa 1) = Wi ©

As the discrete finite difference approximation equation shown by Equation (6) is
nonlinear, it yields a system of nonlinear equations when a fixed number of unknown
points is considered. The approximate solution of the porous medium type equation needs
to be obtained through the solution of the system of nonlinear equations. Instead of solving
the high computational complexity system directly, Newton method is adopted as an
effective linearization approach to solve the system of nonlinear equations.

3.3. Newton Method

To apply the Newton method, Equation (6) needs to be rearranged into a function
as follows:

At 2At
Fijr1 = 23 fWijrt) Wi — <1 + Ef(wi,jﬂ))Wi,jH

At At
+ Wi Wiirjnn + oz f Wiji1) Wigrjsr = Wi  + Wi ()
Ax 4Ax

When a Jacobian matrix with respect to three unknown mesh points, i.e., Wi_1 j11, Wi j11
and W1 11, is derived, a tridiagonal coefficient matrix can be formed. Therefore, the
associated system of linear equations developed from the discretized Equation (3) is written
in the form of

-~

MU=F, 8)
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where
DV, i
Ly Dy W

m=| , ©

l:mfZ DmfZ meZ
‘Cmfl Dmfl_

with the following tridiagonal coefficients:

At At
L;= Ef(wi,j+1) - mf,(wi,j+1)(wi+1,j+l Wi 1j11),

i=2,...m—2m—1,
At 2At 2At
D; = Ef,(wi,j+1)wi+1,j+1 - ((1 + Ef(wi,jﬂ)) + (Ef,(wi,j+l))(wi,j+l)>
At Aty 2
+ 22 Wi Wicrjin + 702 f Wij)) Wist e = Wiea )
i=1,2,....m—2,m—1,

At At
Vi= Ef(wi,jﬂ) + mf,(wi,j+1)(wi+1,j+1 Wi 1j11),
i=1,2,...,.m—2,

We define the corrector to the approximate solutions of (3) as

_ 1) ()
- Wi,j+1 - Wi,j+1'

<

i=12...,m—2m—1,j=0,...,n—1, 10)
with the iteration index, ¢ and F = (Fujsv Fojrrs - Fn2ji1 Fm,lljﬂ)T.

3.4. Newton-Modified Weighted Arithmetic Mean

As stated in Section 1, the major contribution of this research is to establish new
numerical method called Newton-MOWAM with its complete convergence theorem and
proof. The Newton-MOWAM is developed by proposing two optimal parameters on
the existing Weighted Arithmetic Mean (WAM) iterative method. Following that, the
developed Newton-MOWAM method will be investigated by solving the system of linear
equation in matrix form as in Equation (8). Therefore, in the next few subsections, the
formulations of novel Newton-MOWAM method will be explained by demonstrating its
convergence theorems and proofs. The iteration procedure for Newton-MOWAM method
consists of two loops, where in Loop 1, an independent system, ¢ is involved meanwhile
in Loop 2 independent system of (ﬁB is involved. This work assume the number of unknown
points m is an even number.

3.5. Weighted Optimal Value Identification

The weighted optimal value is crucial to accelerate the convergence process for the
iterative methods [24]. Therefore, the Newton-MOWAM method has weighted optimal
values for rapid convergence. In this research, another new weighted optimal value, (2
is initiated for Loop 2. The optimal value (), was set based on trial with least number of
iterations after the best (), is fixed. The execution of these two weighted optimal values
improved the convergence rate of the Newton-MOWAM compared to the standard WAM
methods. On condition that (); = (), the Newton-MOWAM method is equivalent to
the conventional WAM methods. The weighted optimal values (2; and (), have values
between 0 and 2 in the range.
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3.6. Matrix Splitting

According to the authors of [25], the unique splittings can be used to represent a broad
class of iterative methods, thus splittings can be used to represent both outer and inner
iterations with its condition of generality. Therefore, in this paper, the generated monotone
coefficient matrix splittings for both stationary and nonstationary methods, which can be
converged for inner iterations were also demonstrated. In order to conduct a methodical
analysis of convergence conditions, matrix splitting is required. Hence, let the matrix
splitting of M be expressed as

M=H,—K, r=1,2 (11)
where H; and H; are given by
(10 012 ]
021 022
033 034
Hi = 043 014 ,

Om—2,m—2 Om—2,m—1
L Om—1,m—2 Om—1,m—11

and
01,1
022 023
032 033
HZ - T . 7

Om—3,m-3 Tm—3,m—2
Om—2,m-3 Tm—2,m—2
L Om—1,m—14

respectively. Consequently, K, is expressed as
Ki=H,— M, r=1,2. (12)
The MOWAM iterative method is can be defined as follows:
(D—01£)3%F) = (1 —0)D+ V)0 + Onf
(D - WV)P) = (1- )P+ L) +uf b p—01,.., (13)
N 1, N

where (D — 1 L), (D—MV), (1—M)D — L), and ((1 — Qy)D — (),V) are nonsin-
gular triangular matrices; )y and (), are weighted optimal values; (ﬁ(é) is an initial vector
at the /th iteration; meanwhile, (ﬁ(F ) and (ﬁ(B ) are independent solution of forward and
backward iterations, respectively.

From Equation (13), the Newton-MOWAM iterative scheme for the linear system of
Equation (8) is

(fﬁ(é+1) _ ZMOWAMa(Z) + ZMOWAM?r ¢{=0,1,2,..., (14)
where
1
Zmowam = 5 [(D = L) (1 =)D+ V) + (D - V) (1= 0)D + 0L |
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is a square matrix. Meanwhile,
1 _
ZMOWAM = 5 [01(D — L)+ (D - sz)}

is a coefficient of load vector F.
For guaranteed convergence of the MOWAM iteration, the general condition for
solving the Equation (8) is proven in the following Theorem.

Theorem 1. Given an (m — 1) x (m — 1) nonsingular tridiagonal matrix with diagonally domi-
nant M with its components 0;; > 0, for i=1,2,...,m—2,m—1,and

M=H-Ki=H,— K>

where matrices (1)~ and (Hy) ™' are nonsingular with ||(H1)7Y|| > 0, |Ky|| > 0 and
|(H2) 7Y >0, ||Ka|| > 0. The Newton-MOWAM iteration shown by Equation (14) is convergent
for0 <Oy <2and 0 < Oy < 2.

Proof. By hypothesis, M is an (m — 1) x (m — 1) of regular matrix. As H1 = D — 1 L
and Hy = D — ),V are positive definite or strictly diagonally dominant matrices for 0 <
0 <2and 0 < O < 2, the matrices ’Cl = (1 — Ql)D + 1V and Ky = (1 — Qz)D‘F Qlﬁ
are triangular and non-negative. As

Hi—Ki=Ho— Ky =M,

then we have
1 1 1 1 1 -1 1
Q= E(Hl) ’C1+§(H2) Ko=17-— E(Hl) +§(H2) M, (15)
or also can be written as
1 1
5(H) T+ 5(H) T = (T - QM) (16)

The proof of the theorem runs parallel to a standard proof given in [26]. As Q =
(H,) 'K, then the spectral radius is

pmowam(Q) < 1. 17

Therefore, the conditions of 0 < () < 2 and 0 < (), < 2 for the Newton-MOWAM
iteration shown by Equation (14) are converged for any initial vector @(0)_ Therefore,
Theorem 1 is proved. O

4. Numerical Results
4.1. Porous Medium Type Equation Selected Problems

In order to evaluate the efficacy of the Newton-MOWAM iterative method, two
examples of one-dimensional porous medium type initial-boundary value problems are
selected with different levels of difficulties. Below are the following problems that we
consider in the numerical experiment.

Problem 1.

ow 0 2 ow
ET [(Aw —I—Bw)g}, (18)

where A and B are arbitrary constants. The exact solution used for the accuracy checking is given

by [7] c 5
X

VD —4At 2A’

w(x,t) ==+ (19)
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with arbitrary constants C and D. We chose A = —0.5,B = 1,C = 1,and D = 5 as the
specification of Problem 1.

Problem 2. 3 3 A 3
w w
9o [F +Bza}' 20)
where A and B are arbitrary constants. Exact solution is given by [7]
B
w(x, t) = i (21)

e
with an arbitrary constant C and the values that we have selected are A =1,B = 5,and C = 4.

In order to test the applicability of the Newton-MOWAM method to solve a higher
degree of difficulty problem, a two-dimensional porous medium type initial-boundary
value problem is proposed. Note that the formulation of a finite difference approximation
to a two-dimensional porous medium type equation can be made by extending the formu-
lation in Section 3.2 to another spatial direction. The full formulation of a finite difference
approximation to a two-dimensional porous medium type equation can be referred in
one of the authors’ previous work [27]. Below is the following two-dimensional porous
medium type initial-boundary value problem.

Problem 3. 5 5 5 5 5
ow _ 90| s0w| , 9| 500
FT _8x[w Bx}—’_ay{w By} @2)

Exact solution used to test the accuracy of the solution is based on the work in [28]:

w(x,y,t) = v/0.8x + 0.8y + 1.6¢. (23)

In executed numerical experiment, the efficiency of the Newton-MOWAM iterative
method is compared to Newton-WAM iterative method, which was developed indepen-
dently by using the combination of Newton method and the existing WAM iterative
method. There are two criteria used to measure the difference in terms of efficiency be-
tween Newton-MOWAM and Newton-WAM methods: the number of iterations (¢y;ax)
and the program execution time recorded in seconds (s). Besides that, the accuracy of the
two tested numerical methods is taken into account by recording the maximum values of
the absolute errors.

4.2. C Program Implementation and Algorithm

The prototype of proposed Newton-MOWAM and the standard Newton-WAM meth-
ods are designed and developed by using C programming. The C programming language
is used because of its good coding organization and comprehension in the field of numeri-
cal analysis. Furthermore, with the basic C programming concept, a correct calculation of
the number of iterations and the execution time can be taken. For the comparison analysis,
the implementation of the Newton-MOWAM and Newton-WAM on Problems 1-3 is made
independently. The number of iterations, the execution time, and the maximum absolute
error are recorded using five different orders of a matrix, that is m = 64, 128, 256, 512,
and 1024 for Problems 1 and 2, while m x m = 16 x 16,32 x 32, 64 x 64, 128 x 128, and
256 x 256 for Problem 3. The results from these different orders of a matrix are used for
consistency verification. Furthermore, the numerical solution can only be obtained through
the running C program after the iteration process was completed successfully. As the C
program code is copyrighted, below is the Newton-MOWAM Algorithm 1 used for the
program design and development.
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Algorithm 1 Newton-MOWAM iterative method

Define ()1 and ()y;
Define the initial and boundary conditions;
while f < TdoA R
Construct MU = F;
{=0;
while ‘f(W(‘“)) - f(W“))‘ >1071% do
while ‘LAI(”U - fﬂ‘)‘ > 10710 do
@(f) =,
(D= 0iL)9'®) = ((1-01)D+ V)
(D - V) = (1—0)D + L)

(E(Hl) — %(@(F) 4 @(B));
qu+1) — (/ﬁ(é+1),.

(Z) + Qlﬁ,’
(Z) + Qzl/:\,'

) )

end while
WD) — WO 4 e+,
(++;
end while
t++;
end while
Display the numerical outputs

4.3. Results and Discussion

The numerical results from the simulation of Newton-MOWAM and Newton-WAM
methods to solve Problems 1-3 are recorded accordingly from the C program outputs.
The collected results such as the number of iterations, the computation time based on the
time of completion by the developed C programs, and the values of absolute errors are
tabulated in Tables 1-3. Besides that, the percentage of reduction in the number of itera-
tions and the computation time is calculated and showed in Table 4. Based on Tables 1-3,
which correspond to the results of Problems 1-3, respectively, the study found that the
number of iterations and the simulation execute time required by Newton-MOWAM are
notably lower than Newton-WAM for all five different orders of a matrix. The use of two
optimum weighted parameters, which have been added to both forward and backward
iterations, successfully improved the rate of convergence of the solutions of tested prob-
lems. Moreover, the Newton-MOWAM method has minimized the number of iterations
tremendously by 15.74% and the computation time by 6.85% for Problem 1, cut down the
number of iterations by 63.40% while the computation time by 61.12% for Problem 2 and
significantly reduced the number of iterations by 88.24% and the computation time by
80.62% for Problem 3, see Table 4.

In terms of numerical accuracy, the two tested iterative methods are comparable
for the selected orders of a matrix. The study found that the magnitude of maximum
absolute errors by Newton-MOWAM are smaller than by Newton-WAM, which can be
seen at m = 512, 1024 for Problem 1, at m = 128, 256, 512, 1024 for Problem 2 and at
m = 64 x 64,128 x 128,256 x 256 for Problem 3. Evidently, it can be observed that the
magnitude of maximum absolute errors by Newton-MOWAM is decreased further when
the orders of a matrix is increased. In the other words, the approximate solution by Newton-
MOWAM is converged to the exact solution at a considerably large matrix size. Overall,
these findings demonstrated that the efficacy of the proposed Newton-MOWAM method
to obtain accurate solutions of nonlinear porous medium type equation with minimal
computational complexity.
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Table 1. Comparison between Newton-MOWAM and Newton-WAM solutions of Problem 1.

m Iterative Method Loax s Maximum Error
64 Newton-WAM 10,605 5.09 8.508 x 10~°
Newton-MOWAM 9208 474 8.508 x 105
128 Newton-WAM 36,859 35.57 8.440 x 105
Newton-MOWAM 31,123 33.09 8.440 x 1075
256 Newton-WAM 126,489 254.59 8.163 x 107
Newton-MOWAM 105,046 238.01 8.161 x 107
512 Newton-WAM 428,365 1788.66 7.046 x 1075
Newton-MOWAM 358,022 1663.95 7.038 x 1075
1024 Newton-WAM 1,339,097 12,668.48 3.467 x 107°
Newton-MOWAM 1,116,806 11,794.36 3.388 x 107

Table 2. Comparison between Newton-MOWAM and Newton-WAM solutions of Problem 2.

m Iterative Method Conax s Maximum Error
64 Newton-WAM 113 0.05 5.429 x 10
Newton-MOWAM 89 0.04 5.429 x 10
128 Newton-WAM 342 0.22 3.870 x 107°
Newton-MOWAM 172 0.12 3.865 x 10~°
256 Newton-WAM 1165 1.25 3.478 x 107°
Newton-MOWAM 337 0.40 3.466 x 107°
512 Newton-WAM 4117 8.45 3.380 x 106
Newton-MWAM 661 155 3.339 x 10~
1024 Newton-WAM 14,584 59.01 3.355 x 10
Newton-MOWAM 1310 5.60 3.225 x 10

Table 3. Comparison between Newton-MOWAM and Newton-WAM solutions of Problem 3.

m X m Iterative Method Loax s Maximum Error
16 x 16 Newton-WAM 875 1.04 2.8248 x 1073
Newton-MOWAM 243 0.52 2.8248 x 1073
32 x 32 Newton-WAM 3145 13.11 2.8455 x 1073
Newton-MOWAM 483 3.32 2.8455 x 1073
64 x 64 Newton-WAM 11,267 188.94 2.8473 x 1073
Newton-MOWAM 939 23.05 2.8472 x 1073
128 x 128 Newton-WAM 40,013 2934.48 2.8479 x 1073
Newton-MWAM 1847 168.96 2.8478 x 1073
256 x 256 Newton-WAM 140,551 56,148.36 2.8482 x 1073

Newton-MOWAM 3843 2043.62 2.8477 x 1073
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Table 4. Percentage of reduction in the number of iterations and the computation time by Newton-
MOWAM.

Problem 1 m Reduction in £,,4x (%) Reduction in s (%)
64 13.17 6.88
128 15.56 6.97
256 16.95 6.51
512 16.42 6.97
1024 16.60 6.90
Problem 2 m Reduction in £y5x (%) Reduction in s (%)
64 21.24 20.00
128 49.71 45.45
256 71.07 68.00
512 83.94 81.66
1024 91.02 90.51
Problem 3 m X m Reduction in £y (%) Reduction in s (%)
16 x 16 7223 50.00
32 x 32 84.64 74.68
64 x 64 91.67 87.80
128 x 128 95.38 94.24
256 x 256 97.27 96.36

5. Conclusions

This paper presented the formulation of a new numerical method called Newton-
MOWAM for solving several porous medium type equations. The analysis of efficiency
and convergence of the method have also been discussed and supported by the results
extracted from the C language-based simulation. The numerical results of all the tested
examples showed that the proposed Newton-MOWAM iterative method required least
number of iterations with minimum execution time compared to the typical Newton-WAM
method. Further, the Newton-MOWAM also helped obtain the results, and it is much closer
to the exact solution when the the order of matrix is large. Overall, it can be concluded that
the Newton-MOWAM iterative method is certainly better approach in solving nonlinear
porous medium type equation after the well-presented symmetry of the finite difference
approximation and MOWAM iteration. In the future works, the applicability and efficiency
of the Newton-MOWAM method will be further investigated to solve fractional porous
medium type equations. Besides that, the Newton-MOWAM method will also be extended
to solve more complex equations such as thermo-elastic-viscoplastic medium with pores
and thermoelastic medium with double porosity.
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