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Abstract: The mathematical theory behind the porous medium type equation is well-developed
and produces many applications to the real world. The research and development of the fractional
nonlinear porous medium models also progressed significantly in recent years. An efficient
numerical method to solve porous medium models needs to be investigated so that the symmetry
of the designed method can be extended to future fractional porous medium models. This paper
merical method called Newton Modified Weighted Arithmetic Mean (Newton-
MOWAM). The solution of the porous medium type equation is approximated by using a finite

contributes a ne

difference method. Then, the Newton method is applied as a linearization approach to solving
the system of nonlinear equations. Since the system to be solved is large, high computational
complexity is regulated by the MOWAM iterative method. Newton-MOWAM is formulated
technically based on the matrix structure of the system. Some initial-boundary value problems
with a cliffa.nt type of nonlinear diffusion term are presented. Asa result, the Newton-MOWAM
showed a significant improvement in the computation efficiency compared to the developed
standard WEted Arithmetic Mean iterative method. The analysis of efficiency, measured by
the reduced number of iterations and computation time, is reported along with the convergence
analysis.

Keywords: porous medium type equation; nonlinear diffusion; Newton method; finite difference
method; iterative method; weighted arithmetic mean

1. Introduction

Porous medium type equation is one of the classes of nonlinear parabolic evolution
equation. This class of partial differential equations appears in the description and
modelling of natural physical phenomena such as gas diffusion, fluid flow and heat
propagation. The mathematical theory behind the nonlinear porous medium type
equation is well-developed and produces many applications to the real world [} A
porous medium type equation is used to investigate the diffusion of reactant gases across
a thin layer @omus material. For instance, [2] developed a mathematical model to
describe the flow of a mixture of ideal gases in a highly porous electrode for fuel cell
engineering. In their developed model, a porous medium type equation is used to
simulate the evolution of tlffpas mixture.

Porous medium Efife equation is also one of the important mathematical models
used in underground oil production. The permeability of rock above the underground
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oil wells, which represents the porous medium for the oil diffusion, determines the
maximum capacity of oil to be produced over a fixed period. Moreover, underground
oil production is affected by a phenofffiinon called instability during the oil extracting
process. Tfinstability phenomenon appears in the form of irregular trembling fingers
caused by the immiscibility of water and oil. One article has proposed a mathematical
model using the formulated porous medium type equation to simulate the instability
phenomenon [3]. In addition to that, porous medium type equation has its importance
in life sciences such as bacteria biofilms growth model [4], cell population dynamics
model [5], and cell to cell aclion model [6].

Real world phenomena modelled by the porous medium type equation contains ar-
bitrary f‘uons or constants. These functions and constants, which act as the model pa-
rameters, may be specified thrdffijh several experiments or applying the well-established
physical laws. However, some forms of these parameters are assumed in most numerical
studies. Some numerical experiments also use random values for the parameters to
investigate the accuracy and efficiency of the proposed numerical approach. Many exam-
ples of porous medium type equations with arbitrary parameters can be obtained in [7].
Besides that, the research and development of the fractional nonlinear porous medium
type equation have progressed significantly in recent years and is recommended to read
[8].

Many different numerical methodologies have been presented and applied to
solve the mathematical models of porous medium types. The models are varied in
the degree of non-linearity, the number of derivatives terms and the type of diffusion
term. Thus, an efficient numerical method to solve porous medium models needs to be
investigated so that the symmetry of the designed method can be extended to future
fractional porous medium models. A new numerical method called Newton Modified
Wei@Pd Arithmetic Mean (Newton-MOWAM) is introduced and studied in this paper.
The solution of the porous medium type equation is approximated by using a finite
difference mthﬂd. Then, the Newton method is applied as a linearization approach
to solving the system of nonlinear equations. The nonlinear equations generated by
the finite diffeffElce approximation to a nonlinear partial differential equation usually
possess a high computational complexity. In order to overcome the high computational
complexity to solve the nonlinear problems, Heree-thispaperpresents the complexity
regulation by the Newton-MOWAM shick is formulated technically based on the matrix
structure @he system. Hence, the contribution of this paper is to propose the Newton-
MOWAM method to solve the nonlinear porous medium type equations efficiently with
rigorously analysis of convergence by developing a theorem and its corresponding proof.

2. Preliminary

The basic idea behind tfEhumerical method to resolve the porous medium type
equation can be represented in the form of a linear system as follows

Mg =F, (1

where M is a coefficient matrix, F is a given vector, and § signifies the unknown vector
to be calculated. BEEFally, methods for solving Equation (1) can be categorized into two
main streams i.e. direct and iterative methods. In principle, the direct method is the
solution of Equation (1) is determined through a finite number of arithmetic operations
which without consideration of round-off errors. In contrast to direct method, iterative
method generates a chronological order of approximations to the solution by recurrence
application of the same computational prototype at each iteration. When the size of
the linear system is large, iterative method is always preferable to be used compared
to direct method. Direct methods have the complexity of order O(m?), where m is the

mmeshsize order of a matrix. In contrast, for iterative methods, the work per one iteration
is essentially the matrix-vector multiplication, which for sparse matrices is sometimes
much less than O(mz). In addition, the number of iterations needed for the convergence,
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when using a suitable preconditioner, is usually much less than O (). Thus, the overall
work ifinuch less than O(m?*), which means it is fast convergence. According to the book
by [#) sometimes we do not need to solve the system of equations exactly. For example, a
few methods for solving nonlinear system of equations, in which each iteration involves
a linear system to solve. Frequently, it is sufficient to solve the linear system within the
nonlinear iteration only to a low degree of accuracy. Direct methods cannot accomplish
this because, by definition, to obtain a solution, the process must be completed. There is
no notion of early termination or an inexact solution.

A general technique to devise iterative method is based on an additive splitting
of matrix M into M = P — Q where M must be a nonsingular matrThm, the
corresponding iterative scheme for solving linear system as in Equation (1) is of the form

g =p1gp + PIE, ¢=0,1,2,.., 2)

with the new iterate @{{HJ’ previous iterate ' b, vedgl P~1F and iteration matrix P~ Q.
Based on the iterative form shown by Equation (2), there are two main types of iterative
methods, namely stationary iterative and nonstationary iterative methods. Both types of
methods are classified based on the nature of iteration matrix P~ Q and vector P~ 'F.
For stationary methods, the iteration matrix P~1Q and vector P~ !F remain constant
throughout the iteration process, while a new iteration matrix P-1Q and vector P-1F
are generated in every step of the nonstationary iterative methods.

In this paper, searal stationary iterative methods are reviewed i.e. Alternating
Group Explicit [10], Modified Alternating Group Explicit [11], Iterative Alternating
Decomposition Explicit [12], Block SOR [13] and Weighted Mean (WM) [14,15]. Among
these names of stationary iterative method, the concept from the WM method is adopted
to develop a new efficient numerical method for porous medium type equation. The
WM method is a group of algorithms that have been widely used to solve @trix
problems efficiently. One of the WM methods to be investigated in #ff paper is, the
Arithmetic Mean (AM) iterative method [16]. In the previous literature, the AM method
and its variants have been studied and scrutinized on linear and nonlinear systems
arising from a variety of scientific problems such as [17-22]. In the study by [14] and
[16], the numerical simulations showed that AM method compare favourably against
the existing nonstationary iterative method, particularly when the iteration matrix is
strongly asymmetric. Further, Aruchunan et al. [23] introduced a modified AM (MAM)
method by initiating second weighted optimal value to improve the convergence of
AM algorithm via solving fourth order integro-differential equations. However, the
author did not discuss the convergence theorem and its corresponding proofs in the
MAM method. Therefore, in this paper, the MAM method is extended together with
Newton method for solving nonlinear porous medium type equation accompanied by
the complete convergence theorem and proof. The complete procedures on developing
Newton-MOWAM is described in the following segments.

3. Materials and Methods
3.1. Porous medium type equation

This paper considers the numerical solution of a general one-dimensional porous
medium type equation as follows [7],

Jow d ow
o g[f(w g] @)
where the function f(w) represents the type of diffusion term which is depending on
the nonlinear physical phenomenon to be modelled. For example, when f(w) = w*
with the real number g, the simplest form of porous medium equation used to model
the instability phenomenon in oil recovery can be obtained [3]. Using a finite difference
method, the solution domain of Equation (3) can be restricted about a unit square
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containing numerous number of well distributefffesk unknown grid points. The
restriction is usually assumed by imposing sufgle initial condition w(x, 0) = wp(x),0 <
x < X and the Dirichlet boundary condition w(0,t) = a(t), w(X,t) =b(t),0 <t < T.
3.2. Finite difference approximation to porous medium type equation

To formulate the finite difference approximation equation to Equation (3), it is more
appropriate to differentiate the right hand side of Equation (3) into

ow aw 2w

2
3 = f’(w}(g) +f(w}y, (4)

where f'(w) is the derivative of the smooth function f(w).

To set up the network of mesh grid points as the approxim@#jsolutions of Equation
(4), we define the Effproximate solution by W(x,t) = W(iAx, jAt),i = 0,..,m,j =0,..,u,
where Ax and At are the spatial and temporal seshk step sizes respectively. In this work,
a square-shaped domain is considered with the finite interval in space, [0, X] is divided
into m — 1intervals that yields m mesh unknown grid points and the finite interval in
time, [0, T] is divided into n — 1 intervals. By substituting a backward time operator and
a second order center space (fferator into the time and space derivatives in Equation
(4) respectively, the implicit finite difference approximation to Equation (3) can be
formulated as

9)57"”1 Wi _ f!(wif+1)(

2
Witjt1— Wi )

Af 2Ax
Wit —2Wijm + Wisjn
+f(Wi,j+1}( s a;é — ), (5)
and simplified into '
1
At 5
Wijr1 = tazf Wijet) Wisajn = Wiiji1)
At
= a2f Wiis) Wigaja — 2Wijia + Wi ji1) = Wij. (6)

Since the discrete finite difference approximation @fllation shown by Equation (6)
is nonlinear, it yields a system of nonlinear equamls when a fixed number of mesh
unknown points is considered. The affffroximate solution of the porous medium type
equation needs to be obtained through the solution of the system of nonlinear equations.
Instead of solving the high computational complexity system directly, Newton method is
adopted as an effective linearization approach to solve the system of nonlinear equations.

3.3. Newton method

To apply the Newton method, Equation (6) needs to be rearranged into a function
as follows
At 2At
Fijp1 = Ef(wa,jﬂ)wiﬂ,jﬂ - (] + Ef(wi,’ﬁ)) Wit
At At 2

+ g WiadWisjn + 5 f Wi Wi i = Wi jn)" + Wi ()
When a Jacobian matrix with respect to three unknown mesh points, i.e. Wiy j11, Wi
and W{+1J+1, is derived, a tridiagonal coefficient matrix can be formed. Hence, the
associated system of linear equations developed from the discretized Equation (3) is
written in the form of

MU=F, (8)
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where
D W
Ly Dy W

L m—2 Dm—z Vm—z
Em —1 D m—1

with the following tridiagonal coefficients:

At At
Li= Ef( f,j+l) 2Ax zf (Wa,;+l)[wa+l,;+l Wi 14+1}

i:2,m—2,m—],

At 2At 2At
D1 = 2 Vi)Wt — (1 255 OVge)) + G W) W) )

At , At 5
+ 52 (Wijr1)Wiig,j1 + vl (Wijr1)(Wis1jo1 = Wii1j)5
i=12...m—-2,m-1,

At At
Vi= Ef(wi,j+l) + mf’(wi,j+l}(wi+l,j+l Wi 1)
i=1,2,...,m—2,

We define the corrector to the approximate solutions of (3) as
45

a=w""0 W i1, m2m-1,j=0,...,n-1, (10)

i,j+1 Lj+1r
with the iteration index, fand F = (At Bjrtr - Baajr I—‘,,,,l’Hl)T.

3.4. Newton Modified Weighted Arithmetic Mean

Aforemention in the Section 1, the major contribution of this research is to establish
new numerical method called New ton-MOWAM with its complete convergence theorem
and proof. The Newton-MOWAM is developed by proposing two optimal parameters
on the existing Weighted Arithmetic Mean (WAM) iterative method. Following to that,
the developed Newton-MOWAM method will be investigated by solving the system of
linear equation in matrix form as in Equation (8). Therefore inthisseetion; Therefore,
in the next few subsections, the formulations of novel Newton-MOWAM method will
be explained by demonstrating its convergence theorems and proofs. The iteration
procedure for Newton-MOWAM method consists of two loops, where in Loop 1, an
independent system, ¢ is involved meanwhile in Loop 2 independent system of ¢ is
involved. This work assume the number of sesh unknown points m is an even number.

3.5. Weighted optimal value identification

The weighted optimal value is crucial to accelerate the convergence process for the
iterative methods [24]. Therefore, the Newton-MOWAM method has weighted optimal
values for rapid convergence. In this research, another new weighted optimal value, (1
is initiated for Loop 2. The optimal value () was set based on trial with least number of
iterations after the best (1, is fixed. The execution of these two weighted optimal values
improved the convergence rate of the Newton-MOWAM compared to the standard
WAM methods. On condition that )1 = 25, the Newton-MOWAM method is equivalent
to the conventional WAM methods. The weighted optimal values () and (), have
values between 0 and 2 in the range.
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3.6. Matrix Splitting
According to [25], the unique splittings can be used to represent a broad class of
iterative methods hence, splittings can be used to represent both outer and inner itera-
tions with its condition of generality. Therefore, in this paper, the generated monotone
coefficient matrix splittings for both stationary and nonstationary methods, which can be
converged for inner iterations were also demonstrated. In order to conduct a methodical
analysis of convergence conditions, matrix splitting is required. Hence, let eensider the
matrix splitting of M be expressed as
M=H,-K, r=12 (11)

where H; and H; are given by

[i,i i
My 022
033 O34
H, = U343 0Oa4 ,
m»Z,m—Z Ton—2.m—1
L m—1,m—2 l;rm—'l,m—'l.
and
01,1
722 023
032 033
HZ = r

Um—a,m—.% (7m—3,m—2
Ty—2,m—3  Tm—2,m—2

L Cin—1,m—11
respectively. Consequently, Ky is expressed as
Ki=H,—M, r=12 (12)
The MOWAM iterative method is can be defined as follows
(0 ML) =((1-)D+ Vg + ouf
(D-V)¢'® = (1 - )P+ 2R0P+ Df L 01, 1)

(1] 1, -~
(PH-H‘I _ E(‘P(FJ + qj'iBJ)

where (D — O L), (D — (LYV), ((1—01)D — 4 L) and ((1 — )P — (V) are non-
singular triangular matrices, () and (), are weighted optimal values, '’ is an initial
vector at the fth iteration, meanwhile, qHJ{F Jand q“J{BJ are independent solution of forward
and backward iterations, respectively.

From Equation (13), the Newton-MOWAM iterative scheme for the linear system of
Equation (8) is

" = Zyowamd" + zmowanE, €=0,12,..., (14)
where
;
Zyowam = 3] (D= 00 (A -0)D+ V) + (D - 0V) (1 - 2)D + 0,L)]
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is a square matrix. Meanwhile,

[01 (D— 0, £) 1+ (D — OZL‘)]

P =

IMOWAM =

is a coefficient of load vector F.
For guarantees guaranteed convergence of the MOWAM iteration, the general

condition for solving the Equation (8) is proven in the following Theorem.

Theorem 1. Given an (m — 1) x (m — 1) nonsingular tridiagonal matrix with diagonally
dominant M with its components oi; = 0, for i1=12,...,m—2,m— 1, and

M:Hlf)clz?‘l[z*}(jz

where matrices (H1)™" and (Hz) ™! are nonsingular with ||(H1) 7Y = 0, [|K1]| = 0and
[{H2)7Y = 0, |KG]] = 0. The Newton-MOWAM iteration shown by Equation (14) is
convergent for 0 < () < 2and 0 < () < 2.

Proof. By hypothesis, M isan (m —1) x (m — 1 firegular matrix. Since H; = D — (), L
and H» = D — 1V are positive definite or strictly diagonally dominant matrices
for0 < 0 < 2and 0 < ) < 2, the matrices K1 = (1 - )P+ MV and K7 =
(1= )D + O £ are triangular and nonnegative. As

H1— K1 =Ha—Ka =M,
then we have

1 1 1
Q=3(H) "Ka+5(H) Ko =T~ |5(H1) '+3(Ha) [|M, (19)

P3| =

or also can be written as

S(H) T 3 () T = (T - QM) (16)
The proof of the theorem runs parallel to a standard proof given in [26]. Since @ =
(H,) LK, then the spectral radius is

Prowam(Q) < 1. (17)

Therefore, the conditions of 0 < () < 2and 0 < )y < 2 for the Newtun—MOWAM
iteration shown by Equation (14) is converged for any initial vector c?‘-”". Hence, the
Theorem 1is proved. O

4. Numerical Results
4.1. hms medium type equation selected problems

In order to evaluate the efficacy of the Newton-MOWAM iterative method, two
examples of one-dimensional porous medium type initial-boundary value problems are
selected with different levels of difficulties. Below are the following problems that we
consider in the numerical experiment.

Problem 1: 3
w
— = (AwZ—FBw}—‘}, (18)
ot ax [ dx

where A and B are arbitrary constants. The exact solution used for the accuracy checking
is given by [7]

dw o

_x+C B
vD—4At 24’

w(x, t) =+ (19)
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with arbitrary constants C and D. We chose A = —0.5,B =1,C =1,and D =5 as the
specification of Problem 1.

Problem 2: 3 3 A 3
w w
g _9|_4 dw) 20
at ax[wZ—I—Bzax] (20)
where A and B are arbitrary constants. Exact solution is given by [7]:
B .
w(x,t) = 7}} 21)

with an arbitrary constant C and the values that we have selected are A = 1, B = 5,and
c-

In order to test the applicability of the Newton-MOWAM method to solve a higher
degree of difficulty problem, a two-dimensional porous medium type initial-boundary
value problem is proposed. Noted that the formulation of a finite difference approxi-
mation to a two-dimensional porous medium type equation can be made by extending
tffEformulation in Subsection 3.2 to another spatial direction. The full formulation of
a finite difference approximation to a two-dimensional porous mfEjum type equation
can be referred in one of the authors’ previous work [27]. Below is the following two-
dimensional porous medium type initial-boundary value problem.

Problem 3: 3 3 3 3 3
do_ 3 [ sdw] [ 53
5% = 9x [w ax} + 3y [w ay}' (22)

Exact solution used to test the accuracy of the solution is based on [28]:
w(x,y, t) = /0.8x + 0.8y + 1.6t (23)

In executed numerical experiment, the efficiency of the Newton-MOWAM iterative
method is compared to Newton-WAM iterative method, which was developed indepen-
dently by using the combination of Newton method and the existing WAM iterative
method. There are two criteria used to measure the differ@ffle in terms of efficiency
between New ton-MOWAM and New ton-WAM methods: the number fterations (£max )
and the program execution time recorded in seconds (s). Besides that, the accuracy
of the two tested numerical methods is taken into account by recording the maximum
values of the absolute errors.

4.2. C program implementation and algorithm

The prototype of proposed Newton-MOWAM and the standard Newton-WAM
methods are designed and developed by using C programming,. The C proffimming
language is used because of its good coding organization and comprehension in the field
of numericgfinalysis. Furthermore, with the basic C programming concept, a correct
calculation of the number of iterations and the execution time can be taken. For the
comparison analysis, the implementation of the Newton-MOEJAM and Newton-WAM
on Problem +and2 1, 2 and 3 is made independently. The number of iterations, the
execution time, and the maximum absolute error are recorded using five different mesh
sizes+ orders of a matrix, that is m = 64, 128, 256, 512, and 1024 for Problem 1 and
2, while m x m = 16 x 16, 32 = 32, 64 x 64, 128 x 128, and 256 x 256 for Problem 3.
The results from these different meshsizes orders of a matrix are used for consistency
verification. Furthermore, the numerical solution can only be obtained through the
running C program after the iteration process was completed successfully. Since the C
program code is copyrighted, below is the Newton-MOWAM algorithm used for the
program design and development.
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Algorithm 1: Newton-MOWAM iterative method:

Define () and ();

Define wy(x) for 0 < x < X;

Define a(t) and b(t), for0 <t < T;

Construct MU = F;

Forj=0,i=1,2,...,m—2,m — 1, set the initial guess w 1;

ij+1 =
Initialize U = 0;

A o

(D~ L)) = (1- D+ V)" + O F;
V)§P) = (1 - ) D+ L)) + OF;

[+ {f+1).

=
8. Convergence criterion [0/+1) — (11| < 10-1;

9, C(Jmpute W) — pplh) + Gi{(Jrl];

10. Convergence criterion _'}?"(M"i("'li') — }?(Vv{fl)_' < 10-10;

11. Go to the next time step j 4+ +;
12.  Display the numerical outputs.

4.3. Results and discussion

Table 1: Comparison between Newton-MOWAM and Newton-WAM solutions of Prob-
lem 1

m Iterative method Conax s Maximum error
64 Newton-WAM 10605 5.09 8.508 x 1005
Newton-MOWAM 9208 4.74 8.508 x 1079

128 Newton-WAM 36859 3557 8.440 x 1075
Newton-MOWAM 31123 33.09 8.440 x 10705
256 Newton-WAM 126489 25459 8.163 x 109
Newton-MOWAM 105046  238.01 8.161 x 1079
512 Newton-WAM 428365  1788.66 7.046 % 1070°
Newton-MOWAM 358022  1663.95 7.038 x 107
1024 Newton-WAM 1339097 12668.48  3.467 x 1077
Newton-MOWAM 1116806 11794.36  3.388 x 10-%%

Table 2: Comparison between Newton-MOWAM and Newton-WAM solutions of Prob-
lem 2

s [terative method Cinax s Maximum error
64 Newton-WAM 113 0.05 5.429 x 10 "
Newton-MOWAM 89 0.04 5429 x 107
128 Newton-WAM 342 0.22 3.870 x 100
Newton-MOWAM 172 012 3.865 x 107%
256 Newton-WAM 1165 1.25 3478 x 107"
Newton-MOWAM 337 040  3.466 x 107%
)
)
)
)

512 Newton-WAM 4117 845 3380 x 1077
Newton-MWAM 661 1.55 3.339 x 10706
1024 Newton-WAM 14584 5901 3.35%5 x 107
Newton-MOWAM 1310 5.60  3.225 x 107%
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Table 3: Comparison between Newton-MOWAM and Newton-WAM solutions of Prob-

lem 3
X M Iterative method Fonax 3 Maximum error
16x16 Newton-WAM 875 1.04 2.8248 x 1077
Newton-MOWAM 243 0.52 2.8248 x 1093
32x32 Newton-WAM 3145 13.11 2.8455 x 10~
Newton-MOWAM 483 3.32 2.8455 x 10793
p4xpd Newton-WAM 11267 18894 28473 x 10 P

Newton-MOWAM 939 23.05

2.8472 x 10793

128x 128

Newton-WAM 40013 2934.48
Newton-MWAM 1847 168.96

2.8479 x 1093
2.8478 x 1003

256256

Newton-WAM 140551 56148.36
Newton-MOWAM 3843 2043.62

2.8182 x 10 3
2.8477 x 10793

Table 4: Percentage of reduction in the number of iterations and the computation time

by Newton-MOWAM

Problem 1 m Reduction in e+ (%) Reduction in s (%)
64 13.17 6.88
128 1556 697
256 16.95 6.51
512 16.42 697
1024 16.60 6.90

Problem 2 it Reduction in ey (%) Reduction in s (%)
64 21.24 20.00
128 4971 45.45
256 71.07 68.00
512 83.94 81.66
1024 91.02 90.51

Problem 3 m X m Reduction in £, (%) Reduction in s (%)
16 x 16 7223 50.00
32 x 32 84.64 74.68
64 x 64 91.67 87.80
128 x 128 95.38 94.24
256 x 256 97.27 96.36

210 The numerical results from the simulation of Newton-MOWAM and Newton-WAM

e methods to solve Prublem-l—an@, 2 and 3 are recorded accordingly from the C program
2 outputs. The collected results such as the number of iterations, the computation time
222 based on the time of completion by the developed C programs arﬂ the values of absolute
223 errors are tabulated in Table +and2 1, 2 and 3. Besides that, the percentage of reduction
22« In the number of iterations and the computation time is calculated and showed in Table
s &4 Baa:l on Table +=and-2 1, 2 and 3, which correspond to the results of Problem
20 Tand2 1, 2 and 3 respectively, the study found that the number of iterations and the
22»  simulation execute time required by Newton-MOWAM are notably lower than Newton-
2 WAM for all five different smresh-sizes orders of a matrix. The use of two optimum
22s  weighted parameters, which have been added to both forward and backward iterations,
a0 successfully improved the rate of convergence of the solutions of Problem—tand2
an  tested problems. Moreover, the Newton-MOWAM method has minimized the number
n:  of iterations tremendously by 15.74% and the computation time by 6.85% for Problem
a1 and, cut down the number of iterations by 63.40% while the computation time by
234 61.12% for Problem 2-seeJable3 and significantly reduced the number of iterations by
a5 88.24% and the computation time by 80.62% for Problem 3, see Table 4.
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238 In terms of numerical accuracy, the two tested iterative methods are comparable
2z for the selected meshsizes orders of a matrix. The study found that the magnitude of
2w maximum absolute errors by Newton-MOWAM are smaller than by Newton-WAM,
23 which can be seen at m = 512, 1024 for Problem 1 and , at m = 128, 256, 512, 1024
2a0  for Problem 2 and at m = 64 x 64,128 x 128,256 x 256 for Problem 3. Evidently can
21 be observed that the magnitude of maximum absolute errors by Newton-MOWAM
2> 18 decreased further when the mesh=st#es orders of a matrix is increased. In the other
2a3  words, the approximate solution by Newton-MOWAM is converged to the exact solution
24 at a considerably large sresh matrix size. Overall, these findings demonstrated that
25 the efficacy of the proposed Newton-MOWAM method to obtain accurate solutions of
26 nonlinear porous medium type equation with minimal computational complexity.

27 5. Conclusions

240 This paper presented the formulation of a new numerical method called Newton-
20 MOWAM for solving several porous medium type equations. The analysis of effidency
a0 and convergence of the method have also been discussed and supported by the results
21 extracted from the C language based simulation. The numerical results of all the tested
252 [@mples showed that the proposed Newton-MOWAM iterative method requiresd least
23 number of iterations with minimum execution time compared to the typical Newton-
2« WAM method. Further, the Newton-MOWAM is also helped to obtain the results, which
285 mremely closer to the exact solution when the mesh the order of matrix is large. Overall,
26 it can be concluded that the Newton-MOWAM iterative method is certainly better
27 approach in solving nonlinear porous medium type equation after the well-presented
s symmetry of the finite difference approximation and MOWAM iteration. In the future
20 works, the applicability and efficiency of the Newton-MOWAM method will be further
20 investigated to solve fractional porous medium type equations. Besides that, the Newton-
21 MOWAM method is also will be extended to solve more complex equations such as
262 thermo-elastic—viscoplastic medium with pores and thermo elastic medium with double
3 porosity.
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