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Abstract A porous medium equation is a nonlinear
parabolic partial differential equation that presents many
physical occurrences. The solutions of the porous medium
equation are important to facilitate the investigation on
nonlinear processes involving fluid flow, heat transfer,
diffusion of gas-particles or population dynamics. As part
of the development of a family of efficient iterative
methods to solve the porous medium equation, the
Half-Sweep technique has been adopted. Prior works in the
existing literature on the application of Half-Sweep to
successfully approximate the solutions of several types of
mathematical problems are the underlying motivation of
this research. This work aims to solve the one-dimensional
porous medium equation efficiently by incorporating the
Half-Sweep technique in the formulation of an
unconditionally-stable implicit finite difference scheme.
The noticeable unique property of Half-Sweep is its ability
to secure a low computational complexity in computing
numerical solutions. This work involves the application of
the Half-Sweep finite difference scheme on the general
porous medium equation, until the formulation of a
nonlinear approximation function. The Newton method is
used to linearize the formulated Half-Sweep finite
difference approximation, so that the linear system in the
form of a matrix can be constructed. Next, the Successive
Over Relaxation method with a single parameter was

applied to efficiently solve the generated linear system per
time step. Next, to evaluate the efficiency of the developed
method, deemed as the Half-Sweep Newton Successive
Over Relaxation (HSNSOR) method, the criteria such as
the number of iterations, the program execution time and
the magnitude of absolute errors were investigated.
According to the numerical results, the numerical solutions
obtained by the HSNSOR are as accurate as those of the
Half-Sweep Newton Gauss-Seidel (HSNGS), which is
under the same family of Half-Sweep iterations, and the
benchmark, Newton-Gauss-Seidel (NGS) method. The
improvement in the numerical results produced by the
HSNSOR is significant, and requires a lesser number of
iterations and a shorter program execution time, as
compared to the HSNGS and NGS methods.

Keywords One-Dimensional  Porous Medium
Equation, Half-Sweep, Finite Difference Method, Newton,
Successive Over Relaxation, Iterative Method

1. Introduction

Porous medium equation (PME) is a nonlinear parabolic
partial differential equation that exists in many nonlinear
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physical occurrences. For instance, PME is a general
equation that brings up the Boussinesq equation that is used
to model groundwater flow. PME is also used to describe
the flow of ideal gas in a homogeneous porous medium,
which is formulated by the laws such as mass balance,
Darcy’s law and state equation. In addition, PME is an
important equation to be solved for a better understanding
of the theory of heat propagation, particularly involving
temperature-dependent thermal conductivity [1].

From the application of the PME side, [2] analyzed the
heat transfer through human tissue, and found that the
transport theory of porous media can be applied onto the
biological heat transfer, as the theory reduces the number
of assumptions when compared to other existing biological
heat models. Then, [3] studied the qualitative properties of
the PME in order to describe the dispersal processes in the
dynamics of living things. The author found that the PME
can be used to improve the qualitative as well as the
quantitative agreement of population dynamics models.
PME, without doubt, has great importance in many
scientific fields, and more details about the theory and
application of PME are available in [1].

The solutions of several one-dimensional PME problems
via the finite difference method have been studied by many
researchers [4-9]. As part of the development of a family of
efficient iterative methods to solve the PME, this research
adopted the Half-Sweep technique in the formulation of the
finite difference method. Several researchers have
discussed the success of the Half-Sweep technique in
approximating the solutions of several types of
mathematical problems [10-16]. Motivated by the unique
property of Half-Sweep in securing a low computational
complexity while computing the numerical solutions, this
work aims to solve the one-dimensional PME using the
unconditionally stable Half-Sweep finite difference
approximation.

For this particular nonlinear type of partial difference
equation, the finite difference discretization through the
implementation of Half-Sweep yields a nonlinear type of
approximation equation. Before the solution of PME is
computed, the formulated nonlinear approximation
equation is linearized using the Newton method to form a
sparse and large linear system. A Successive Over
Relaxation (SOR) iterative method with optimum
parameters was applied for an efficient solution to a
generated linear system.

2. Half-Sweep Finite Difference
Method

Let us consider the general form of the one-dimensional

PME [17]:
ou i) u
=P (R unosxest

where p and m are assumed to be any rational numbers.
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It is worthy to mention that Eq. (1) can exist for all x € R
and 0 < t < . For our numerical study, we attempt to
investigate the numerical solution of Eq. (1) in a
rectangular domain, subject to the boundary and initial
conditions, as follows:

u(O, t) = gO (t)’u(lr t) = 91(15), u(xv 0) = uO(x)' (2)

where g,(t), g, (t)and uy(x)are the prescribed functions
based on the provided exact solutions.

Before we show the formulation of Half-Sweep finite
difference approximation to Eq. (1), it is best to discuss the
formulation of the standard implicit finite difference
approximation to Eq. (1), since our proposed method is
based on the implicit finite difference method. Now, by
defining the approximate solutions to Eq. (1), U,; =
U(pdx,jat) , p=01.2,....M—-1,j=0,12,...T and
both spatial and temporal steps are Ax =1/M and
At = 1/T respectively, the standard implicit finite
difference approximation equation to Eq. (1) can be written
as follows [4, 7, 8, 18]:

m m+1 m
Upj1 —aUp:1Up i jer + 20U, —aUpqUp_q jin

m-1 752 m-1
—pmUy 1 Ups jer + 28MmUR 5 Up iy juaUpoy jia

—BmUL U1 ji1 = Up j, )
— p_At _ — — | =
where a=_—, ,8—4, p=12,...,M—1 and j

012,...,T.

The approximation equation shown in Eq. (3) can also
be known as the Full-Sweep finite difference
approximation equation, because it approximates all mesh
points in a bounded domain. Hence, Eq. (3) can be
extended to develop our Half-Sweep finite difference
approximation equation by lengthening the distance
between two consecutive mesh points from Ax to 24x,
as follows [8]:

m m+1 m
U —a Up+2,j+1 T 2aU, —aUp1Up-—zj+1

pJj+1 p.Jj+1 pJj+1
m-17py52 m-1
—BmUy G Upsg jv1 + 2BMmUL 55Uy 1 Up—z jia
m-—1 772 —
—BmUy 1 Up 21 = Up,js “

where « =4’;it2 , B =%, p=24,....M—2 and j=
01.2,...,T.
The approximation equation (4) is proven to be
unconditionally stable, and the proof is at the appendix.
Using Eq. (4), we may obtain a nonlinear system for
time level j + 1, in the form of:

Fiy, =0, )
T

where Fj.q = (fzrj+1,f4’j+1, ---:fM—Z,j+1) and for each

function,

m m+1 m
Upjs1 —aU Upizjs1 +2aU —-a Up_z,j+1

pi+1 pj+1 p.j+1
m-1 72 m-1
—BmUy 3 Upyg jer + 2BMUG 5 Up sz j1Upz i

(©)

m-1 2 —
—BmUy 3 Up 3z i1 = Upj = fpj+1r
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Since solving the nonlinear system (5) deals with great
computational cost, we use the Newton method to linearize
the nonlinear system (5), and then apply the SOR iterative
method to obtain the solution. Using the Newton method,
the linear system can be written as follows [7, 8, 19]:

(k) ppr(k) _ (k)
Aj+1lj+1 - _Fj+1' 7
where
F0fy, 0fs, fpjur 1
2,j+1 2,j+1 2,j+1
Uy j41 0Uy 41 0Uy—2j41
“© 0f4j+1 0faj+1 0faj+1
. _JAj+1
Ay = | 0V 4 Uy j41 OUy—zjs1| -
Ofm-2j+1 Ofm—2j+1 0fu-2,j+1
| 0U3 541 0Us 41 Uy 2,411
’ (k) k
Uz f2,j+1 0
o _ | Ulsj w0 _ | faj
l}'ﬂ - 4:]+1 »and F1'+1 - 1
U’M—Z,j+1 fM—2.j+1

The approximate solutions to Eq. (1) are computed by:

(k+1) _ 57(k) (k)
Qj+1 —gj+1+—Ulj+1’ ®)
k) _ (77 (k) (k) T
where Uiy = (Upy1, Uy iy o Up g 1) -

3. HSNSOR Iterative Method

Based on the linear system (7), we find out that the
coefficient matrix A]Ui)l has the form of a tridiagonal. Thus,

to apply the SOR iterative method for solving the linear
system (7) [20, 21], we consider the three components’

decomposition of A](Ii)las follows,

F) — n) (k) (k)
Aj+1 - Dj+1 - Lj+1 - Vj+1' )
where Dj(fi is the diagonal of the matrix, L;’fr)l is the

o)

strictly lower triangular matrix, and V;;jis the strictly

upper triangular matrix, at the time level j + 1 and k-th
iteration.

Hence, using the linear system (7) and the
decomposition (9), the proposed method (HSNSOR) can
be derived into

Ul(k+1) — (1 _ (U)E(k)

Yt j+1
) 0\ (1) 0 )
+‘“(Dj+1 - Lj+1) (V1'+1lj+1 - F}'+1)’ (10)

Based on the formula shown in (10), the relaxation
parameter lies within 1 <w < 2. When w =1, the
formula can be known as the HSNGS [8].

i0.0'OQOOO'llOQOO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1. HSNSOR on the finite mesh points M = 16

According to Figure 1, the implementation of the
HSNSOR method for solving Eq. (1) can be explained as
follows. After the boundary and initial conditions were
imposed on the solution domain, the HSNSOR
approximates the solutions on all the interior mesh points
that are labelled by black dots, i.e. 2, 4, ..., 14. After the
iteration process is completed and the values of the black
dots are obtained, the remaining mesh points that are
labelled by white dots, i.e. 1, 3, ..., 15 are computed
directly using the approximation equation. The full
algorithm for the computation using the HSNSOR method
is described in Algorithm 1.

Algorithm 1. HSNSOR iterative method
i At time level j, define g,(t), g, (t) and uy(x),

1. Initialize the value of w , gf’j)l =1.0, and
()
llj+1 =0,
1il. Set up the linear system (7),
iv. Iterate the formula (10),
1(k+1) 1(k) -10
V. Check the convergence |lj+1 —Qj+1| <107

If the correctors converge, compute (8) and then the
remaining mesh points,

Vi. Check the convergence for all mesh points
using |Fj(fl+1) - F](f:” < 107'° . If the solutions

converge, goto j + 1.

In practice, the optimum value of w is determined
(+0.01) by running Algorithm 1 several times, and the one
that gives the least number of iterations is selected as the
optimum.

4. Stability Analysis of the Half-Sweep
Finite Difference Method on the
One-Dimensional Porous Medium
Equation

The application of Fourier analysis to prove the stability
of the applied finite-difference on nonlinear partial
differential equation (like PME) cannot be rigorously
justified. Nevertheless, it is practically effective [22].

Assuming the solution u(x,t) exists within the region
of 0 < x,t < 1. Additionally, “freeze” the nonlinear term
u™ at each mesh point in the same region, and let it be a
constant . Eq. (1) can be rewritten into the following:

ou b ou 2%u
=pa(n3) = puss (11)
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The Half-Sweep finite difference method that is used to
discretize Eq. (11) can be defined as:

ou

U . _U .
du _ o _Ipjr17pj
— =D Uy = 2P (12)
and
0%u
dx2 = D+2xD—2xUp,j+1 =
Up+2,)'+1_2Up,j+1+Up—2,j+1. (13)

4(4x)?
Using Eq. (12) and (13) to discretize Eq. (11) gives:

Upj+1 — /l(Up+2,j+1 —2Up 41+ Up—Z,j+1) =Up,; (14)
where A = pu(4t)/4(4x)2.
By applying the von Neumann method which is:
U,; = &er?, (15)
Eq. (14) can be transformed into:
5(1 — (e -2+ e-zf’i)) =1. (16)

Since e2%" — 2 + e72%1 = —4 5in? @, Eq. (16) can be
further rewritten into:
1
¢= 1+41sin26°

Based on Eq. (17), we have0 < & < 1 for all positive
values of A and 6 € [—m,m]. Hence, the Half-Sweep
finite difference approximation is proven to be
unconditionally stable.

17)

S. Numerical Experiment

For the numerical experiment, several criteria are
observed such as the number of iterations (k), the program
execution time (seconds) and the magnitude of absolute
errors (€,,4,) - These criteria are used to evaluate the
efficiency of the HSNSOR method to solve Eq. (1) subjects
to both initial and boundary conditions as in Eq. (2). The
efficiency of the HSNSOR method is then compared to the
HSNGS and NGS [23] methods using four selected
examples. Four examples used for the numerical
experiment are presented hereafter.

Example 1 [17]

Given a one-dimensional PME with m equals to 1:
ou a ou
5= (u5) (18)
and the exact solution u(x,t) = C;x + C?t + C, with the
arbitrary constants C; and C,. This experiment uses
C1=1andC2:O.
Example 2 [17]

Given a one-dimensional PME wherein m equals to -1
and the parameter p is 0.5:

ou _ a -1 au)
at O'Sax (u ax/)

19)

The exact solution is u(x,t) = (C;x — 0.5C%t + C,)™ L,
and this experiment uses C; = 0.6 and C, = 1.3.

Example 3 [24]

Given a one-dimensional PME wherein m equals to 2:

w_ 9 (29"

ot Pox (u ax)'
-1

and the exact solutionu(x, t) = (x + 1)(2\/ c?— t) has

a condition ¢ < C2. For the experiment, we use C = 2.

(20)

Example 4 [24]
Given a one-dimensional PME wherein m equals to -2
and the parameter p is 0.5:

Z=052(u?2).

at ax ox (21)

1

The exact solution is u(x,t) = (2C;x —c?t +C,) 2
and we use C; = 0.35 and C, = 1.35.

Numerical outputs collected from the implementation of
the HSNSOR, HSNGS and NGS methods on the four
examples are tabulated in Tables 1 to 4. The tables show
the comparison between the three implemented methods
based on the number of iterations (k), the program
execution time (seconds) and the magnitude of absolute
errors(Emqy) With five different sizes of mesh points, M.
Additionally, Table 5 shows the percentages of reduction
in the number of iterations and the program execution time
by the HSNSOR and HSNGS against the control method,
NGS.

Table 1. The numerical results of Example 1

M Method (w) k seconds Emax

64 NGS 3835 2.38 2.76 x 1078
HSNGS 1065 0.16 6.16 x 10~

HSNSOR (1.59) 269 0.14 1.84 x 10710

128 NGS 13678 7.50 1.22 x 1077
HSNGS 3835 0.86 2.75x 1078

HSNSOR (1.77) 562 0.32 1.19 x 10710

256 NGS 48395 38.58 5.33x 1077
HSNGS 13678 5.62 1.22 x 1077

HSNSOR (1.87) 1142 1.13 2.09 x 10710

512 NGS 169693 252.94 2.10x 107
HSNGS 48395 38.22 5.33x 1077

HSNSOR (1.93) 2328 3.68 3.19x 10710

1024 NGS 587031 1712.49 7.62 x 107°
HSNGS 169693 274.28 2.10x 107

HSNSOR (1.97) 4942 17.25 9.10 x 10711
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Table 2. The numerical results of Example 2 Table 5. Percentages of reduction in the number of iterations and the
program execution time by HSNSOR and HSNGS
M Method (w) k seconds Emax . 3
Iterative seconds
64 NGS 1720 1.13 2.03x 1075
e Example Method (%) (%)
HSNGS 489 0.20 2.03x10
HSNSOR (1.48) 186 0.15 2.03 % 10-5 1 HSNSOR 92.99-99.16 94.12-98.99
128 NGS 6034 406 2,02 x 10-5 HSNGS 71.09-72.23 83.98-93.28
HSNGS 1720 1.07 2.03x 1075 2 HSNSOR 89.19-98.73 86.73-99.20
-5
HSNSOR (1.69) 375 035  203x10 HSNGS 70.25-71.57  73.65-84.77
256 NGS 20907 27.03 2.00 x 1075
HSNGS 6034 6.45 2.02 % 10-5 3 HSNSOR 82.81-98.40 86.62-99.21
HSNSOR (1.83) 745 1.16 2.03 %105 HSNGS 71.28-72.14 73.59-88.66
512 NGS 71385 287.34 1.93 x 107° 4 HSNSOR 89.83-98.73 87.30-99.36
-5
HSNGS 209074375 2.00x10 HSNGS 69.24-72.11  74.90-85.81
HSNSOR (1.91) 1464 3.78 2.03 x 1075
1024 NGS 239975 1741.01 1.72x 107°
HSNGS 71385 304.92 1.93 x 10~° .
HSNSOR (1.95) 3044 13.95  2.03x 1075 6. Conclusion
Table 3. The numerical results of Example 3 ' In conclusion, we have successfully .derlyed .and
implemented the HSNSOR method for solving linearized
M Method (w) k seconds Emax systems formed by considering several mesh points and the
64 NGS 1344 1.17 8.39 x 1075 Half-Sweep implicit finite difference approximation
HSNGS 386 0.17 8.38 X 10-5 equation. According to the numerical results, the HSNSOR
HSNSOR (1.52) 231 0.15 8.38 x 10-5 method has successfully reduced the number of iterations
H _ 0
8 NGS ey s 839 % 10 by ap'proglmately 82.8.1 99.16%, and tl(l)e _program
HSNGS 1344 0.75 839 % 10-5 execution time by approximately 86.62-99.36% in solving
: : B the one-dimensional PME, when compared to the NGS
HSNSOR (1.73) 461 0.38 8.39x 10 method (Table 5). This significant improvement is
256 NGS 17308 20.03  839x107° attributed to the usage of the optimum values of w for the
HSNGS 4824 4.71 8.39x 107° SOR iterative method. Another reason is that the
HSNSOR (1.85) 908 1.25 8.39 x 1075 application of Half-Sweep contributes to the reduction of
512 NGS 61658  270.11  8.40 x 10-5 computational complexity. Overall, all methods have a
HSNGS 17308 33.05 839 x 10-5 good agreement in terms of accuracy.
HSNSOR (1.92) 1784 4.25 8.39 x 1075
1024 NGS 218147  2008.35 8.43 x 107°
HSNGS 61658 227.65 8.40 x 107°
HSNSOR (1.96) 3490 1577 839x107° REFERENCES
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