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Abstract: Solving time-fractional diffusion equation using a numerical method
has become a research trend nowadays since analytical approaches are quite lim-
ited. There is increasing usage of the finite difference method, but the efficiency of
the scheme still needs to be explored. A half-sweep finite difference scheme is
well-known as a computational complexity reduction approach. Therefore, the
present paper applied an unconditionally stable half-sweep finite difference
scheme to solve the time-fractional diffusion equation in a one-dimensional mod-
el. Throughout this paper, a Caputo fractional operator is used to substitute the
time-fractional derivative term approximately. Then, the stability of the difference
scheme combining the half-sweep finite difference for spatial discretization and
Caputo time-fractional derivative is analyzed for its compatibility. From the for-
mulated half-sweep Caputo approximation to the time-fractional diffusion equa-
tion, a linear system corresponds to the equation contains a large and sparse
coefficient matrix that needs to be solved efficiently. We construct a precondi-
tioned matrix based on the first matrix and develop a preconditioned accelerated
over relaxation (PAOR) algorithm to achieve a high convergence solution. The
convergence of the developed method is analyzed. Finally, some numerical
experiments from our research are given to illustrate the efficiency of our compu-
tational approach to solve the proposed problems of time-fractional diffusion. The
combination of a half-sweep finite difference scheme and PAOR algorithm can be
a good alternative computational approach to solve the time-fractional diffusion
equation-based mathematical physics model.
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1 Introduction

The increasing interest in the application of fractional-order partial differential equations (FPDE) to
replace the classical integer-order partial differential equations can be seen obviously in recent years. The
fractional derivative terms in the FPDE, which have many extraordinary things yet to be discovered, has
attracted the attention of worldwide mathematics experts. Dealing with the research in fractional calculus
is crucial these days because the research gap is still wide open. Although the standard theory is already
presented to give us the correct results, the new FPDE problems keep coming and causing the standard
theory to be modified or extended. This work is motivated by the recent active development of an
accurate and efficient numerical approach to solve FPDE. Generally speaking, there are three types of
FPDE, namely time-fractional, space-fractional, and time-space-fractional differential equations. These
FPDEs can be distinguished based on the presence of fractional derivative, which either on time
derivative, space derivative or both time and space derivative. In this paper, time-fractional type is the
subject of interest and an investigation on developing an efficient computational approach for time-
fractional diffusion equation is conducted.

In recent years, the time-fractional diffusion equation (TFDE) has been actively applied in many fields.
Li et al. [1] used TFDE to improve signal smoothing performance in signal processing. Then, González-
Olvera et al. [2] applied TFDE to obtain a better result in the simulation of shipping water events
compared to the classics diffusion equation. Next, Liao et al. [3] developed a TFDE based image
denoising model. Furthermore, TFDE exists in many mathematical models such as pattern formation [4],
groundwater pollution [5], contaminant transport [6], option pricing and risk calculation [7], and methyl
alcohol mass transfer in silica [8]. To better understand and make an accurate interpretation of these
TFDE models, the solution of the models must be computed accurately and efficiently using a
computational approach. The solution of a TFDE is dependent on the fractional order since the fractional
order influences the concentration of the diffusion process. For instance, when the fractional order is
ranged within 0; 1ð Þ, the diffusion is slow, which also known as a sub-diffusion phenomenon. Whereas
when the fractional order is 1; 2ð Þ, the diffusion is fast or known as super-diffusion phenomena. Besides
that, several fractional operators have been introduced to facilitate the research on solving the TFDE
significantly, referred to in de Oliveira et al. [9]. These fractional derivatives can be categorized into the
classics and the moderns. The classics fractional derivatives include Grunwald-Letnikov derivative,
Liouville derivative, Caputo derivative, Hadamard derivative, Marchaud derivative, Miller-Ross
derivative, Weyl derivative and Erdelyi-Kober derivative. Meanwhile, the modern fractional derivatives
are like Coimbra derivative, Hilfer derivative, Davidson derivative, Chen derivative, Atangana-Baleanu,
Caputo-Fabrizio, and many more. More details about the classification of fractional operators can be seen
in Baleanu et al. [10].

The present paper is devoted to investigating the numerical solution of a TFDE using an innovative finite
difference scheme and an efficient computational algorithm. Solving TFDE using a numerical method has
become a research trend nowadays since analytical approaches are quite limited. Many numerical
methods have been proposed to solve TFDE. However, based on our preliminary study, we found that the
usage of a finite difference method to solve TFDE needs to be explored, especially in terms of efficiency
to obtain the solution. In the past, [11] used the explicit finite difference method to solve TFDE. Then,
Murio [12] used the implicit finite difference method to obtain an unconditionally stable numerical
solution to TFDE. Another unconditionally stable numerical method called Crank-Nicolson finite
difference method has been applied on TFDE [13]. Recently, an innovative finite difference scheme
called the half-sweep finite difference (HSFD) with iterative method emerges as a potential approximation
to TFDE [14]. We are interested to apply a HSFD because it is a good computation complexity reduction
approach. The advantage of using HSFD over the standard finite difference method to solve several
mathematical models can be seen in the literature. It is worth to mention that HSFD has been applied to
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efficiently solve linear partial differential equation [15,16], nonlinear partial differential equation [17], and
fuzzy partial differential equation [18].

This paper extends the work from [14] by achieving a high convergence rate of the solution. A
preconditioned technique is proposed and integrated with an accelerated over relaxation (AOR) iterative
method introduced by [19]. The contribution of this paper is to present a preconditioned accelerated over
relaxation (PAOR) algorithm via an HSFD scheme to solve a one-dimensional TFDE efficiently.
Throughout the formulation of an HSFD approximation, a Caputo derivative is applied to approximate
the time-fractional term in the equation. This efficient numerical method will increase the literature for
the researchers to better understand the time-fractional mathematical model of equilibrium, stability, and
time evolution in the long-time limit [20,21]. The details about our numerical method are described in the
following sections.

2 Numerical Method

2.1 Half-Sweep Finite Difference with Caputo Derivative

In this section, an HSFD approximation with Caputo derivative is formulated by considering a general
form of TFDE as follows:

@aW

@ta
¼ p

@2W

@x2
þ q

@W

@x
þ rW : (1)

Based on Eq. (1),W ¼ W x; tð Þ is the solution function, and we assume it exists in the domain subjects to
the Dirichlet boundary conditions. Then, p; q and r are either known functions or coefficients. The degree of
fractional order for Eq. (1) is denoted by a. The present paper investigates one-dimensional TFDE with
0, a, 1, which is a sub-diffusion problem. This range of fractional order is extended from the classic
diffusion equation, which has the value of the time fractional order a ¼ 1, by considering all rational
numbers between 0 and 1. More details about TFDE, particularly unconventional diffusion theory, can be
referred to in Evangelista et al. [22].

Definition 1. Caputo derivative is defined as

@a

@’a
f ’ð Þ ¼ 1

� m� að Þ
Z ’

0

f mð Þ sð Þ
’� sð Þa�mþ1ds; (2)

where m� 1, a � m; a. 0 and ’. 0 [23].

Using Def. 1 as shown in Eq. (2), the time-fractional term in Eq. (1) can be approximated by

@aW

@ta
¼ 1

� 1� að Þ
Z 1

0

@W xi; sð Þ
@t

tj � s
� ��a

ds; 0, a, 1; (3)

and form a discrete approximation that can be written as

@aW

@ta
ffi ra;k

XN
n¼1

x að Þ
n Wi;j�nþ1 � Ui;j�n

� �
; (4)

where
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ra;k ¼ 1

� 1� að Þ 1� að Þka ; (5)

and

x að Þ
n ¼ n1�a � n� 1ð Þ1�a: (6)

Next, for the HSFD discretization on the space derivatives, we consider a partitioning of the solution
domain that is uniformly so that the grid framework is fixed everywhere. We denote h ¼ H=M for the
space domain 0;H½ � and M+1 points. For the time step, we denote k ¼ T=J for the time domain 0;T½ �
and J þ 1 levels. Therefore, the value at each point is denoted by W x; tð Þ ¼ W xi; tj

� � ¼ Wi;j for
i ¼ 0; 1; 2; 3 . . . ;M ; and for j ¼ 0; 1; 2; . . . ; J. The application of HSFD on the spatial derivatives of
Eq. (1) combining with the Caputo time derivative as in Eq. (4) produces

ra;k
XN
n¼1

x að Þ
n Wi;j�nþ1 �Wi;j�n

� � ¼ p

8h2
Wi�2;j � 2Wi;j þWiþ2;j

� �þ q

4h
Wiþ2;j �Wi�2;j

� �þ rWi;j; (7)

for i ¼ 2; 4; 6; . . . ;M � 2.

When the Caputo-HSFD approximation as in Eq. (7) is applied at j � 2, for instance, the equation can be
expressed in the form of

ra;k
XN
n¼1

x að Þ
n Wi;j�nþ1 �Wi;j�n

� � ¼ ~pWi�2;j þ ~qWi;j þ ~rWiþ2;j; (8)

where ~p ¼ p
8h2 � q

4h ; ~q ¼ r � p
8h2 ;~r ¼ p

8h2 þ q
4h :

By letting j ¼ 1 in Eq. (7), a linear equation which represents the first level of the solution of TFDE is
expressed as

�~pWi�2;1 þ ~qWi;1 � ~rWiþ2;1 ¼ Fi;1; (9)

where Fi;1 ¼ ra;kWi;1. With M þ 2 grid points to be numerically computed, a system of linear equations can
be generally formed as

�W
�

¼ F�
; (10)

where

� ¼

~q2 �~r2
�~p4 ~q4 �~r4

�~p6 ~q6 �~r6
. .
. . .

. . .
.

�~pM�4 ~qM�4 �~rM�4

�~pM�2 ~qM�2

2
66666664

3
77777775

M
2ð Þ�1ð Þ2

; (11)

W
�

¼ W2;1 W4;1 W6;1 � � � WM�4;1 WM�2;1½ �T ; (12)
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and

F�
¼ F2;1 þ ~p2W0;1 F4;1 F6;1 � � � FM�4;1 FM�2;1 þ ~rM�2WM�2;1½ �T : (13)

2.2 Analysis of Half-Sweep Finite Difference Stability

In this section, the stability of Caputo-HSFD approximation as in Eq. (7) is analyzed using both the Von-
Neumann method and the Lax equivalence theorem [24,25].

Theorem 1

The Caputo-HSFD approximation to (1) with 0, a, 1 on the finite domain 0 � x; t � 1, with zero
boundary condition W 0; tð Þ ¼ W H ; tð Þ ¼ 0 for all t � 0; is unconditionally stable.

Proof:

DefiningWi;j ¼ nje
i xihð Þ and x is an element of a real number. Eq. (7) can be derived using nje

i xihð Þ into

ra;knj�1e
i xihð Þ � ra;k

XN
n¼1

x að Þ
n nj�nþ1e

i xihð Þ � nj�ne
i xihð Þ

� �

¼ �~pnje
i x i�2ð Þhð Þ þ ra;k � ~q

� �
nje

i xihð Þ � ~rnje
i x iþ2ð Þhð Þ;

(14)

and can be reordered into a more straightforward discrete equation in the form of

ra;knj�1 �
XN
n¼1

x að Þ
n nj�nþ1e

i xihð Þ � nj�ne
i xihð Þ

� �
¼ nj �~p� ~rð Þ cos xhð Þð Þ þ ra;k � ~q

� �� �
: (15)

Since

nj ¼
nj�1 þ

PN
n¼1

x að Þ
n nj�n � nj�nþ1

� �

1þ ~pþ~rð Þ
ra;k

cos xhð Þ þ ~q
ra;k

� � ; (16)

and

1þ ~pþ ~rð Þ
ra;k

cos xhð Þ þ ~q

ra;k

� �
� 1; (17)

for any values of a; n;x; h and k, we have an inequality that can be expressed as

nj � nj�1 þ
XN
n¼1

x að Þ
n nj�n � nj�nþ1

� �
; n � 2: (18)

By letting n ¼ 2 as in Eq. (18), we obtain

n2 � n1 þ x að Þ
2 n0 � n1ð Þ; (19)

and in general, Eq. (19) becomes

nj � nj�1; j ¼ 1; 2; . . . ; (20)
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or

nj � nj�1 � nj�2 � . . . � n1 � n0: (21)

Thus, it follows that the solution of TFDE being approximated by using the Caputo-HSFD
approximation equation converges to an exact solution as h; k ! 0:

2.3 Preconditioned Accelerated Over Relaxation Iterative Method

This section discusses the formulation of the PAOR iterative method based on the Caputo-HSFD
approximation. Using the linear system as in Eq. (10), a conversion of an original linear system into a
preconditioned one can be done as follows:

�	
��

¼ F	
� ; (22)

with a new coefficient matrix,

�	 ¼ P�PT ; (23)

a preconditioned right-hand side vector,

F	
� ¼ PF�

; (24)

and a new approximation

W
�

¼ PT
��
: (25)

Based on this system conversion, a preconditioned matrix P, that we proposed is [26]:

P ¼ I þ S; (26)

where

S ¼

0 �s2 0 0 0 0
0 0 �s4 0 0 0
0 0 0 �s6 0 0

0 0 . .
. . .

. . .
.

0
0 0 0 0 0 �sM�4

0 0 0 0 0 0

2
66666664

3
77777775
; (27)

and matrix I, is an identity matrix.

Next, we consider the matrix �	 as a summation of three matrices. The three matrices, D, L and V ,
represent the diagonal, the lower and the upper triangular matrices, respectively. The matrix �	 can be
expressed as [27,28]:

�	 ¼ D� L� V : (28)

Using Eqs. (22) and (28), the PAOR iterative method based on Caputo-HSFD approximation can be
formulated into

�
~

Kþ1ð Þ ¼ D� xLð Þ�1 q� xð ÞDþ qV þ 1� qð ÞD½ ��
~

Kð Þ þ q D� xLð Þ�1 F	
~;

(29)
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where x and q are the parameters for accelerating the convergence rate of the solution. We name Eq. (29) as
the HSPAOR method for simplicity. The algorithm for the HSPAOR method is provided as in Algorithm 1.

Algorithm 1: HSPAOR

(i) Set W
�

¼ 0 and E ¼ 10�10,

(ii) For j ¼ 2; 4; . . . ;M � 2, i ¼ 2; 4; . . . ;M � 2, iterate the formula shown in Eq. (29),

(iii) Compute W Kþ1ð Þ
�

¼ PT��
Kþ1ð Þ;

(iv) Convergence criterion W Kþ1ð Þ
�

�W Kð Þ
�

��� ���,
(v) If the criterion is achieved, display approximate solutions.

2.4 Convergence Analysis of HSPAOR Method

In this section, the analysis of convergence of the HSPAOR iteration process is presented. The iterative
matrix for HSPAOR can be expressed in the form of

Ax;q ¼ D� xLð Þ�1 q� xð ÞDþ qV þ 1� qð ÞD½ �: (30)

Theorem 2

If the HSPAOR iteration converges or spec Ax;q
� �

, 1 for some q and x 6¼ 0, then one of the following
statements hold:

(i) x 2 0; 2ð Þ and q 2 �1; 0ð Þ [ 0;þ1ð Þ;
(ii) x 2 �1; 0ð Þ [ 2;þ1ð Þ and q 2 2x

2�xð Þ ; 0
� �

[ 0; 2ð Þ.
Proof:

Suppose the eigenvalues �j of Ax;q are connected with the eigenvalues nj of Sx;x 
 Sx. Note that Sx is a SOR
iteration matrix by

�j ¼ 1� q
x

� �
þ q
x
nj; (31)

where j ¼ 2 2ð ÞJ � 2: Also, note that

YJ�2

j¼2;4;::

nj ¼ 1� xð Þj: (32)

Using Eqs. (31) and (32), we have

YJ�2

j¼2;4;::

1� x
q
þ x�j

q

� �
� 1� xð Þj: (33)

Since �j

		 		, 1 for j ¼ 2ð2ÞJ � 2,

1� xð Þj		 		 ¼ YJ�2

j¼2;4;::

1� x
q
þ x

q
�j

				
				 �

YJ�2

j¼2;4::

1� x
q

				
				þ x

q
�j

		 						
				

� �

IASC, 2022, vol.31, no.2 1179



,
YJ�2

j¼2;4;::

1� x
q

				
				þ x

q

				
				

� �
¼ 1� x

q

				
				þ x

q

				
				

� �j

; (34)

which can be expressed in a simpler way as

1� xj j, 1� x
q
þ x

q

				
				

				
				: (35)

Eq. (35) is equivalence to

q 1� xð Þj j, q� xj j þ xj j: (36)

Hence, it can be shown Eq. (36) holds if and only if exactly one of the following statements hold:

(i) x 2 0; 2ð Þ and q 2 �1; 0ð Þ [ 0;þ1ð Þ;
(ii) x 2 �1; 0ð Þ [ 2;þ1ð Þ and q 2 2x

2�xð Þ ; 0
� �

[ 0; 2ð Þ.
Theorem 3

If the HSPAOR iteration with x ¼ 0 converges or spec A0;q
� �

, 1
� �

, then 0,q, 2:

Proof:

If x ¼ 0; then

A0;q ¼ 1� qð ÞDþ q Lþ Uð Þ: (37)

If lj; j ¼ 2 2ð ÞJ � 2 are the eigenvalues of some iteration matrix B, then the eigenvalues �j of A0;q is

�j ¼ 1� qþ qlj; (38)

which implies

lj ¼
1

q
q� 1þ �j

� �
; (39)

where j ¼ 2 2ð ÞJ � 2:

By letting B ¼ 0, we get

XJ�2

j¼2;4;::

lj ¼ 0 ¼
XJ�2

j¼2;4;::

1

q
q� 1þ �j

� �
: (40)

From Eq. (40), we have

XJ�2

j¼2;4;::

�j ¼ J

2
� 1

� �
: 1� qð Þ; (41)

and consequently

J

2
� 1

� �
1� qð Þ

				
				 ¼

XJ�2

j¼2;4;::

�j

					
					 �

XJ�2

j¼2;4;::

�j, n;
		 		: (42)
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Since �j

		 		, 1; from the hypothesis, therefore,

J

2
� 1

� �
1� qð Þ

				
				, n; (43)

and the proof is completed.

3 Results and Discussion

In this section, two TFDE test examples are considered for evaluating the efficiency of the HSPAOR
method. The benchmark used is the previously developed method of PAOR from [29]. The three criteria,
namely the number of iterations, computation time in simulation program (measured in seconds or sec.)
and maximum absolute error, are compared to each other at three different orders of a values, i.e.,
a ¼ 0:25; a ¼ 0:50 and a ¼ 0:75. The cycle of iteration process in Algorithm 1 stops at E ¼ 10�10.
Below are the following two TFDE examples:

Example 1: We consider a TFDE in the form of [30]:

@aW

@ta
¼ @2W

@x2
: (44)

To initiate the simulation, we set the initial condition

W x; 0ð Þ ¼ x2; (45)

and the Dirichlet boundary condition is stated as follows

W 0; tð Þ ¼ 2kta

� aþ 1ð Þ ;W H ; tð Þ ¼ H2 þ 2kta

� aþ 1ð Þ : (46)

Example 2: We attempt to solve the following TFDE [31]:

@W

@t
¼ � 1:2ð Þxb @

bW

@xb
þ 3x2 2x� 1ð Þe�t: (47)

We initiate the approximate solution's computation using the initial condition

W x; 0ð Þ ¼ x2 � x3; (48)

and used zero Dirichlet condition. The exact solution is given by

W x; tð Þ ¼ x2 1� xð Þe�t: (49)

The numerical results from both HSPAOR and PAOR implementations are recorded in Tabs. 1 and 2. We
run the numerical simulation at M ¼128, 256, 512, 1024, and 2048 for the numerical solution consistency
inspection. From the collected results (see in Tabs. 1 and 2), HSPAOR required the least number of iterations
and the shortest computation time to complete the iteration cycle for the simulation in computing the
solutions. The superiority of HSPAOR against PAOR is supported when the numerical results showed a
similar pattern for all values of mesh sizes and tested parameter, a. The reason behind the success of
HSPAOR to solve TFDE efficiently is the use of the half-sweep technique, which efficiently computes
half of the total points using PAOR iteration rather than computes the whole points in the solution
domain iteratively. The numerical findings can be summarized as follows: using Example 1, the number
of iterations and computation time by HSPAOR has reduced averagely by 61.8% and 68%, respectively.
Meanwhile, for Example 2, HSPAOR has reduced the number of iterations and the computation time by
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PAOR at 57% and 53.3%, respectively. Besides, the accuracy of the HSPAOR and PAOR methods is the
same for different mesh and values of a.

4 Conclusion

The present paper has successfully applied an HSFD scheme with Caputo's derivative to formulate the
suitable approximation to TFDE. The stability of the scheme was analyzed and proved its unconditional
stability. An efficient iterative method called PAOR was derived, and its computational algorithm is

Table 1: Numerical result from testing Example 1

M Method a ¼ 0:25 a ¼ 0:50 a ¼ 0:75

K sec. MAE K sec. MAE K sec. MAE

128 PAOR 280 1.12 9.90e-5 225 1.59 9.80e-5 160 1.50 1.30e-4

HSPAOR 143 0.81 9.95e-5 124 0.70 9.84e-5 83 0.69 1.30e-4

256 PAOR 1100 12.44 9.90e-5 950 10.75 9.80e-5 713 8.13 1.30e-4

HSPAOR 410 2.94 9.95e-5 240 2.02 9.84e-5 237 2.01 1.30e-4

512 PAOR 4397 92.58 9.90e-5 3754 78.34 9.80e-5 2780 59.09 1.30e-4

HSPAOR 1776 19.25 9.95e-5 1122 12.33 9.84e-5 514 6.17 1.30e-4

1024 PAOR 16487 699.81 9.90e-5 14058 607.00 9.80e-5 10394 429.58 1.30e-4

HSPAOR 6759 145.33 9.95e-5 4350 92.98 9.84e-5 2113 44.42 1.30e-4

2048 PAOR 56289 3002.21 1.30e-4 46535 2870.12 9.90e-5 33819 735.20 1.30e-4

HSPAOR 33741 1590.12 9.95e-5 21470 1220.39 9.84e-5 10932 455.98 1.30e-4

Table 2: Numerical result from testing Example 2

M Method a ¼ 0:25 a ¼ 0:50 a ¼ 0:75

K sec. MAE K sec. MAE K sec. MAE

128 PAOR 193 3.14 1.94e-2 234 2.33 8.27e-2 250 3.10 1.36e-1

HSPAOR 97 2.04 1.94e-2 119 1.48 8.27e-2 144 1.57 1.36e-1

256 PAOR 385 4.08 1.95e-2 261 3.87 8.30e-2 270 5.02 1.37e-1

HSPAOR 187 2.58 1.95e-2 1.32 1.89 8.37e-2 153 3.97 1.37e-1

512 PAOR 1078 17.91 1.95e-2 557 6.72 8.30e-2 378 8.13 1.37e-1

HSPAOR 579 11.00 1.95e-2 274 3.04 8.30e-2 190 4.19 1.37e-1

1024 PAOR 4478 130.68 1.95e-2 2104 72.61 8.30e-2 890 30.66 1.37e-1

HSPAOR 2389 53.77 1.95e-2 1125 28.84 8.30e-2 396 13.59 1.37e-1

2048 PAOR 16841 1239 1.95e-2 8111 583.92 8.30e-2 3732 290.36 1.37e-1

HSPAOR 4478 189.16 1.95e-2 2104 94.58 8.30e-2 890 43.44 1.37e-1
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shown. From the significant numerical finding, it can be concluded that the computational complexity
reduction possessed by the Caputo-HSFD scheme and the efficient PAOR algorithm is a good
combination as a numerical method for TFDE's solutions.
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