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Abstract: Porous medium galinn is a nonlinear parabolic partial
&renlial equation that presents in many physical occurrences. The
solutions of the porous medium equation are important to facilitate
the investigation on the nonlinear processes involving fluid flow,
heat transfer, diffusion of gas-particle or population dynamics.
part of the development of a family of efficient iterative methods to
solve the porous medium equation, the Half-Sweep technigue is
adopted. The works of literature about the application of Half-Sweep
to successfully approximate the solutions of several types of
mathematical problem{Els become the motivation to the present
paper. This paper aims to solve the one-dimensional porous medium
equation efficiently by incorporating the Half-Sweep technique in
the formulation of the unconditionally stable implicit finite
difference scheme. The noticeable unique property of Half-Sweep is
its ability to secure alow computational complexity in computing for
numerical samons. Throughout this paper, from the application of
Half-Sweep finite difference scheme on the general porous medium
equation until the fon'nulaliorml nonlinear approximation function
is shown. paper uses the Newton method to linearize the
formulated Half-Sweep finite difference approximation so that the
linear system in the form of a matrix can be constructed. Then, the
Successive Over Relaxation method with a single parameter is
applied to solve the generated linear sy stem per time step efficiently .
ﬁl. to evaluate the efficiency of the developed method that can be
known as Half-Sweep Newton Succeé«ee Over Relaxation
(HSNSOR) method, the criteria such as the number of iterations, the
program execution time and the magnitude of absolute errors are
observed. From the collected numerical results, the finding of this
paper shows that the numericae'luliuns obtained by the HSNSOR
are as accurate as of the Half-Sweep Newton Gauss-Seidel
(HSNGS), which is under the same family of Half-Sweep iterations,
and the benchmark, Newton-Gauss-Seidel (NGS) method. The
improvement in the numerical resﬂ. produced by the HSNSOR is
significant, that requires a lesser number of iterations and shorter
time of program execution, compared to HSNGS and NG5S methods.
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1. Introduction

Porous medium equation (PME) is a nonlinear parabolic
partial differential equation that exists in many nonlinear
physical occurrences. For instance, PME is a general equation
that brings up the Boussinesq equation that is used to n‘@l
the groundwater flow. PME is also used to describe the flow
of ideal gas in a homogeneous porous medium which is
formulated by the laws such as mass balance, Darcy’s law and
state equation. In addition to that, PME is an important

equation to be solved for a better understanding of the theory
of heat propagation, particularly involving temperature-
dependent thermal conductivity [1].

From the application of PME side, [2] have analyzed the
heat transfer through human tissues and found that the
transport theory of porous media can be applied into the
biological heat transfer as the theory reduces the number of
assumptions when compared to other existing biological heat
models. Then, [3] studied the qualitative properties of the
PME in order to describe the dispersal processes in the
dynamics of living things. The author found that the PME can
be used to improve the qualitative as well as the quantitative
agreement of population dynamics models. PME, without
doubt, has great importance in many scientific fields and more
details about the theory and application of PME can be
referred to [1].

The smli()ns of several one-dimensional PME problems
via the finite difference method has been studied by many
researchers [4-9]. As part of the development of a family of
efficient iterative methods to solve the PME, this research
adopted the Half-Sweep technique in the formulation of the
finite difference method. Several researchers have discussed
the success of the Half-Sweep technique in approximating the
solutions of several types of mathematical problems [10-16].
Hence, motivated by the unique property of Half-Sweep in
securing a low computational complexity while computing
the numerical solutions, this paper aims to solve the one-
dimensional PME using the unconditionally stable Half-
Sweep finite difference approximation.

For this particular nonlinear type partial difference
equation, the finite difference discretization through the
implementation of Half-Sweep yields a nonlinear type
approximation equation. Before the solution of PME is
computed, the formulated nonlinear approximation equation
is linearized using the Newton method to form a sparse and
large linear system. Then, for an efficient solution to a
generated linear system, Successive Over Relaxation or SOR
iterative method with optimum parameters is applied.

2. Half-Sweep Finite Difference Method

Let us consider the general form of the one-dimensional PME
[17]:
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where p and m are assumed as any rational number. It 1s worth
to mention that Eq. (1) can existfor allx € R and 0 <t < .
For our numerical study, we attempt to investigate the

erical solution of Eq. (1) in a rectangular domain and
subject to the boundary and initial conditions as follows:

u(0,t) = go(t),u(1,t) = g,(),u(x,0) = uy(x), (2)
where g,(t), g,(t) and u,(x) are the prescribed functions
based on the provided exact solutions.

Before we show the formulation of Half-Sweep 1'1
difference approximation to Eq. (1), it is best to discuss the
formulation of the standard implicit finite difference
approximation to Eq. (1) because our proposed method is
based on the implicit finite difference method. Now, by
defining the approximate solutions to Eq. (1), Up; =
U(pdx,jAt), p=10,12,....M—1,j=0,1,2,...T and both
spatial and temporal steps zlremr =1/M and At =1/T
respectively, the standard irnic:it finite difference
approximation equation to Eq. (1) can be written as ['}'n

Up jur — aUpl 1 Upyy jua + ZaUE,TI —alUy 1 Up_a jua

_18mU;5f_+11U§+1,j+1 + Zﬁmyﬁ_ﬁ”pn,}nypq,ju
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a=2 p=% p=12..M-1 ad j=

Ax?’
0,12,...,T.

The approximation equation shown in Eq. (3) can also be
known as Full-Sweep finite difference approximation
equation because it approximates all mesh points in a bounded
domain. nce, Eq. (3) can be extended to develop our Half-
Sweep finite difference approximation equation by
lengthening the distance between two consecutive mesh
pc)ina'mm Ax o 24x as follows [8],

Upjor— aUEjHUanH + ZaU{,‘fffl - WJ+1 Upz a1
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where

— pat =Z = - : j =
where «a = rL B= i 24,...,M=2 and j
0,12,...,T.
The approximation equation (4) is proven to be

unconditionally stable, and the proof is at the appendix.
Using Eq. (4), we may get a nonlinear system for time level
j + 1 that has the form of

F}+1 =0, (5)
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Since solving the allil]Cill' system (5) deals with great

computational cost, we use Newton method to linearize the

nonlinear system (5) then apply the SOR iterative method to

obtain the solution. Using the Newton method, the linear

system can be written as
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The approximate solutions to Eq. (1) are computed by
(k+1) _ py (k) 1(k)
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3. HSNSOR Iterative Method

Based on the linear system (7), we find out that the coefficient
llrix Aﬁﬂ has the form of tridiagonal. Thus, to apply the
SOR iterative method for solving the linear system (7) [18§,

19], we consider the three components decomposition of A%

+1
as follows,
(k) _ pto (k) (k)
Aj+1 - Dj+1 - Lj+1 - Vj+1' )
where Dj(ﬂ is the diagonal of the matrix, L}Pl is the strictly
lower triangular matrix, and l‘}(ﬂ is the strictly upper

triangular matrix, at the time level j + 1 and k-th iteration.

Hence, using the linear system (7) and the decomposition
(9), the proposed method that we call the HSNSOR can be
derived into

K41 k
Ej’n ) = (1- w)£§+j1

(k) ()L (1) 00k (k)
+w(ﬂj+1 - Lj+1) (V_}+1£_’;+1 - F;-'+1)' (10)

Based on the formula shown in (10), the relaxation parameter
lies within 1 <w < 2. When w =1, the formula can be
known as the HSNGS [8].
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Figure 1. HSNSOR on the finite mesh points M = 16

By referring to Figure 1, the implementation of HSNSOR
method for solving Eq. (1) can be explained as follows. After
the boundary and initial conditions are imposed on the
solution domain, the HSNSOR approximate the solutions on
all the interior mesh points that are labelled by black dots, ie.
2, 4, ..., 14, After the iteration process completed and the
values of the black dots are obtained, the remaining mesh
points that are labelled by white dots, ie. 1, 3, ..., 15 are
computed directly using the approximation equzlti()arhe full
algorithm for the computation using the HSNSOR method is
described in Algorithm 1 below.

Algorithm 1. HSNSOR iterative method

1. Attime level j, define g,(t), g, (t) and uy(x),

ii. Initialize the value of w, g}ﬂ = 1.0, and g’j’?] =0,
iii. Set up the linear system (7).,

iv. Iterate the formula (10),




v. Check the convergence |£5T;1) - Eﬁﬂl < 1071 1f the
correctors converge, compute (8) and then the remaining
mesh points,

vi. Check the convergence for all

usinglF}(i(:ﬁ - F}(ﬁl < 107 If the solutions converge,

t()j+ 1.

For practice, the optimum value of w is determirfE)+0.01) by
running Algorithm 1 several times, and the one that gives the
least number of iterations will be selected as optimum.

4. Stability Analysis of the Half-Sweep Finite
Difference Method on the One-Dimensional
rous Medium Equation

mesh  points

The application of Fourier anal{§§e§ to prove the stability of the
applied finite-difference on nonlinear partial differential
equation (like PME) cannot be rigorously justified.
Nevertheless, it is practically effective [20].
Assuming the solution u(x, t) exists within the region of

0 < x,t < 1. Also, “freeze” the nonlinear term u™ at each
mesh point in the same region and let it be a constant p. Eq.
(1) can be rewritten into

du d ¢ du d0%u

o Pa(“a) = PGy
The Half-Sweep finite difference method that is used to
discretize Eq. (11) can be defined as

du U]EJ-'*'I - UPJ

at = D-tUpjs1 = At

D,y D—qup,j+1 =

(11)

(12)
and
0%u
ax?
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Using Eq. (]2811d (13) to discretize Eq. (11) gives
Upjer = A(UMZJH ~2Upjua Up—ZJH) =Upp (14)
where A = pu(At)/4(Ax)%.
By applying the von Neumann method which is

(13)

Upy = §le??, (15)
Eq. (14) can be transformed into
5(1—1(9291 —2+e*29i)) =1. (16)

Since e2% — 2 + 729 = —4 5in? 6, Eq. (16) can be further
rewritten into
1
S Tvaismio an
Based on Eq. (17), we have ¢ < 1 for all positive values
of A and 8 € [—m, ]. Hence, the Half-Sweep finite difference
approximation is proven to be unconditionally stable. O

5. Numerical Experiment

For the numerical experiment, several criteria are observed
such as the number of iterations (k), the program execution
time (seconds) and the magnitude of absolute errors (&,,,5)-
These criniil are used to evaluate the efficiency of the
HSNSOR method to solve Eq. (1) subjects b()lh initial and
boundary conditions as in Eq. (2). The efficiency of the
HSNSOR method is then compared to the HSNGS and NGS
[21] methods using four selected examples. Following are the
four examples used for the numerical experiment.

Example 1[17]
Given a one-dimensional PME with m equals to 1:
du 8 du
3= P (v55) as
and the exact solution u(x,t) = Cix + C#t + €, with the
arbitrary constants C; and Cy. This experiment uses € = 1
and C; = 0.

Example 2[17]
Given a one-dimensional PME with m equals to -1 and the
parameter p is 0.5:

du 4 _ou
The exact solution is u(x,t) = (C;x — 05CE + C,) 7L, and
this experiment uses C; = 0.6 and £, = 1.3.

Example 3 [22]
Given a one-dimensional PME with m equals to 2:

du d du

—=p—|ut—], 20

ac  Pox (“ Bx) 1( )
and the exact solution u(x,t) = (x + 1){2\362 - t) has a
condition t < C%. For the experiment, we use € = 2.

Example 4 [22]
Given a one-dimensional PME with m equals to -2 and the

parameter p is 0.5:
du
u~? E)' (1)

du d
3 = 55| 1

The exact solution is u(x, t) = (2C;x — ¢t + C,) 72 and we

use € = 0.35 and €; = 1.35.

Numerical outputs collected from the implementation of
the HSNSOR, HSNGS and NGS methods on the four
examples are tabulated in Table 1 until 4. Table 1 until 4
shows the C()l‘l’lpill’isa between the three implemented
methods based on the number of iterations (k), the program
execution time (seconds) and the magnitude of absolute
errors (gpay) with five different sizes of mh points, M.
Also, Table 5 is used to show the percentages of reduction in
the number of iterations and the program execution time by
the HSNSOR and HSNGS against the control method, NGS.

E]
!ahle 1. The numerical result of Example 1

M Method (w) ke seconds Emax
64 NGS 3835 238 2.76 x 1078
HSNGS 1065 0.16 6.16 X 1077
HSNSOR (1.59) 269 0.14 1.84 x 10710
128 NGS 13678 7.50 122 x 1077
HSNGS 3835 0.86 275 x 1078
HSNSOR (1.77) 562 0.32 1.19 x 10710
256 NGS 48395 38.58 533 x 1077
HSNGS 13678 5.62 122 x 1077
HSNSOR (1.87) 1142 1.13 2.09 x 107*°
512 NGS 169693 25294 210 x 107°
HSNGS 48395 3822 533 %1077
HSNSOR (1.93) 2328 3.68 3.19 x 10710
1024 NGS 587031 171249 7.62 x 107°
HSNGS 169693 27428 210x107°
HSNSOR (1.97) 4942 1725 910 x 1071t




Table 2. The numerical result of Example 2

4 HSNSOR 89.83-98.73 87.30-99.36

M Method (w) k seconds Emax HSNGS  69.24-72.11 74.90-85.81
64 NGS 1720 113 203x107°
HSNGS 489 0.20 2.03 x 10_3 6. Conclusion
HSNSOR (1.48) 186 0.15 2.03 x 107~
128 NGS 6034 4.06 202 x107° In conclusion, we have successfully derived and implemented
HSNGS 1720 1.07 203 x1075% the HSNSOR method for solving linearizedstelm formed
HSNSOR (1.69) 375 035 203 x10°% by considering several mesh points and the Half-Sweep
256 NGS 20907 2703 2.00x 10_5 implicit finite difference approximation equation. From the
HSNGS 6034 645 2.02x 10:: [Pulated numerical result, it showed that the HSNSOR
HSNSOR (1.83) 745 116 2.08 x 10_: method has successfully reduced the number of iterations
512 NGS 71385 28734 193 x10 .
HSNGS 20007 4375 200 x 10-5 approximately by 82.81% - 99.16% and the program
HSNSOR (191) 1464 378 203 x 105 execution time approximately by 86.62% - 99.36% in solving
1024 NGS 239975 174101 172 x 10-° the one-dimensional PME when compared to the NGS
HSNGS 71385 30492 193 x 10-5 method, see in Table 5. The significant improvement is
HSNSOR (1.95) 3044 1395 203 x10°° attributed to the usage of the optimum values of w for the SOR

Table 3. The numerical result of Example 3

M Method (w) k seconds Emax

64 NGS 1344 1.17 8.39 x 10~°
HSNGS 386 017 838x10°°

HSNSOR (1.52) 231 0.15 8.38 x 1075

128 NGS 4824 284 8.39 x 10~°
HSNGS 1344 0.75 8.39 x 10~°

HSNSOR (1.73) 461 038 8.39 x 1075

256 NGS 17308 2003 8.39 x 1075
HSNGS 4824 4.71 8.39 x 10~°

HSNSOR (1.85) 908 125 8.39 x 10~°

512 NGS 61658 27011 8.40 x107°
HSNGS 17308 3305 8.39 x 10~°

HSNSOR (1.92) 1784 425 8.39 x 10~°

1024 NGS 218147 200835 843 x1075
HSNGS 61658 22765 840 x 1075

HSNSOR (1.96) 3490 15.77 8.39 x 10~°

Table 4. The numerical result of Example 4

M Method (w) k seconds Emax

64 NGS 2015 1.26 288 x 107°
HSNGS 562 0.23 2,65 x 1076

HSNSOR (1.50) 205 0.16 2.66 x 1078

128 NGS 7082 490 290 x 107°
HSNGS 2015 1.23 288 x 107°

HSNSOR (1.70) 420 0.36 290 x 1076

256 NGS 24325 4542 271 x 107°
HSNGS 7082 7.37 290 x 107

HSNSOR (1.84) 837 1.29 296 x 107°

512 NGS 81729 35479 186x10°°
HSNGS 24325 50.33 271 %107

HSNSOR (1.92) 1706 4.18 2.97 x 10~°

1024 NGS 265698 229323 333 x10°°
HSNGS 81729 33237 186x 1076

HSNSOR (1.96) 3381 1479 298 x10°¢

Table 5. Percentages of reduction in the number of iterations
and the program execution time by HSNSOR and HSNGS

Example Iterative k seconds

Method (%) (%)

1 HSNSOR 92.99-99.16 94.12-98.99
HSNGS  71.09-72.23 83.98-93.28

2 HSNSOR 89.19-98.73 86.73-99.20
HSNGS  70.25-71.57 73.65-84.77

3 HSNSOR 82.81-98.40 86.62-99.21
HSNGS  71.28-72.14 73.59-88.66

iterative method. Another reason is that the application of
Half-Sweep contributes to the r@cli(m of computational
complexity. Overall, all methods have a good agreement in
term of accuracy.
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